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Samenvatting

Moderne elektronische schakelingen maken veelal gebruik van CMOS tech-
nologie waarin MOSFETs fungeren als actieve elementen. Het gebruik van
een MOSFET als versterkend element biedt behalve veel voordelen zoals
de lage kosten, de hoge snelheid, en de goede integreerbaarheid ook nade-
len, met name de notoire laagfrequente ruis ervan. Het laagfrequent (LF)
ruisgedrag van MOSFETs wordt gedomineerd door plaatsgebonden ener-
gietoestanden (‘traps’) aan de Si-SiO2 grenslaag die een elektron tijdelijk
kunnen invangen en daarmee de geleiding van de MOSFET beı̈nvloeden.
In dit proefschrift wordt de LF ruis van MOSFETs bestudeerd onder groot-
signaal biascondities.

Onder grootsignaal biascondities vertonen MOSFETs vaak een afname in
LF ruis. Bovendien komen grootsignaal biascondities nauw overeen met
de manier waarop MOSFETs in echte schakelingen gebruikt worden. Aan
drie belangrijke punten wordt in dit proefschrift aandacht besteed. Ten eer-
ste: Hoe kan LF ruis onder grootsignaal biascondities gemeten worden, ten
tweede: Hoe komt het dat de ruis vaak afneemt onder grootsignaal biascon-
dities, en tot slot: Is de LF ruisreductie significant en bruikbaar genoeg om
toe te passen bij het ontwerp van analoge schakelingen met MOSFETs?

In hoofdstuk 3 wordt ingegaan op het meten van LF ruis onder grootsig-
naal biascondities. Tevens worden daar de belangrijkste meetresultaten ge-
presenteerd. Het meten van LF ruis onder grootsignaal condities stelt hoge
eisen aan het dynamisch bereik van de meetopstelling omdat de LF ruis veel
kleiner is dan de tijdvariante bias. Er worden drie methoden toegepast. Ten
eerste kan door differentieel te werken, het bias signaal gemeenschappe-
lijk aangeboden worden, terwijl de ruis differentieel blijft. Op deze wijze
wordt het gemeenschappelijke signaal door de meetopstelling onderdrukt,
en wordt het mogelijk de ruis te meten. Ten tweede kan de ruis van het
bias-signaal gescheiden worden in de tijd, dus er wordt eerst een bias-puls
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SAMENVATTING

aangeboden en kort daarna wordt de ruis gemeten, en tot slot kan de ruis en
het bias-signaal in frequentie gescheiden worden: de ruis is laagfrequent en
het bias-signaal hoogfrequent.

Met behulp van deze meetmethoden worden metingen gepresenteerd aan
verschillende MOSFETs. Waar grote MOSFETs systematisch een afna-
me van de LF ruis vertonen in grootsignaal bedrijf, is het gedrag van kleine
MOSFETs met een oppervlak van ver onder de 1µm2 veel minder voorspel-
baar. Deze transistoren vertonen al in de stationaire toestand veel variatie
in hun LF ruis, en bovendien is niet met zekerheid van te voren vast te stel-
len hoe ze zullen reageren op grootsignaal biascondities. Meestal neemt
de LF ruis af, maar soms neemt deze ook toe. Dit komt omdat het gedrag
van deze transistoren door slechts één of enkele ‘traps’ gedomineerd wordt.
Zowel n- als p-kanaals MOSFETs vertonen soortgelijk gedrag, hetgeen er
op duidt dat het ruisgenererende proces hetzelfde is. Tevens wordt gemeten
dat het periodiek variëren van zowel de ‘gate’ als de ‘source’ spanning van
de MOSFET een vergelijkbaar effect heeft op de LF ruis ervan.

In hoofdstuk 4 wordt een verklaring gepresenteerd voor de meetresultaten
aan de hand van de al eerder genoemde ‘traps’, waarvan het gedrag wordt
beschreven door de Shockley-Read-Hall theorie. Aan de hand van deze
theorie, toegepast onder grootsignaal biascondities, wordt aangetoond dat
de ruis onder grootsignaal biascondities wordt gedomineerd door traps die
zich dichter bij het midden van de bandgap bevinden. Aangezien de trap-
dichtheid in het midden van de bandgap vaak lager is dan in de buurt van
de geleidingsband, kan zo worden uitgelegd dat de ruis gemiddeld gezien
afneemt in grootsignaal bedrijf. Om de voorspellingen van het model te
toetsen wordt een simulator beschreven die in staat is het gedrag van de
transistoren nauwkeurig te reproduceren. Ook transitief ruisgedrag is goed
te begrijpen op basis van het model en de simulator.

Als laatste wordt in hoofdstuk 5 aandacht besteed aan de vraag of groot-
signaal excitatie voor circuitontwerpers praktisch toepasbaar is om LF ruis
van MOSFETs tegen te gaan. In tijdcontinue schakelingen blijkt het moge-
lijk grootsignaal excitatie als ruisreductietechniek te gebruiken, maar moet
vergeleken worden met een modulerende structuur die de LF ruis geheel
verwijdert. Het gebruik van grootsignaal excitatie in dit soort situaties is
dan ook niet zonder meer aan te bevelen. In tijddiscrete schakelingen is het
eveneens mogelijk grootsignaal excitatie nuttig toe te passen als ruisreductie
techniek, temeer daar de schakeling tussen de samplemomenten uitgescha-
keld kan worden, en er zodoende geen noemenswaardige bezwaren aan het
gebruik ervan kleven. Bij ‘correlated double sampling’ structuren moet er
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voor gezorgd worden dat de biasgeschiedenis van beide samplemomenten
identiek is, daar de ruis anders eerder toe dan af zal nemen. Ook hoogfre-
quent schakelingen hebben last van LF ruis door ‘opconversie’ van de ruis.
Aangezien de LF ruisreductie niet gevoelig blijkt te zijn voor de frequentie
waarmee de MOSFET aan en uit gezet wordt, kan in deze schakelingen ook
nuttig gebruik gemaakt worden van grootsignaal excitatie als ruisreductie
techniek.

Hoewel ruisreductie door grootsignaal excitatie weliswaar een meetbare af-
name van de LF ruis van MOSFETs oplevert, is de winst beperkt en afhan-
kelijk van het proces in kwestie. Om grootsignaal excitatie ten behoeve van
ruisreductie nuttig toe te kunnen passen moet eerst een voldoende nauw-
keurig stationair LF ruismodel beschikbaar zijn. Vervolgens moet het LF
ruisgedrag van het proces in kwestie onder grootsignaal condities gekarak-
teriseerd worden.
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Chapter 1

Introduction

1.1 Noise is everywhere

Whenever people communicate, whether by smoke signals, waving their
hands, shouting, using a satellite phone or an optical fiber, noise limits how
well they can communicate and how much effort is needed to get the messa-
ge across. If you are shouting to someone on the other side of a busy road,
the noise of the traffic makes it difficult to communicate. You will either
have to raise your voice, speak more slowly or repeat yourself if you want
to be understood.

Electronic circuits are limited by noise in much the same way. Going
against my firm conviction that equations do not belong in a introducti-
on, I will present to you what is perhaps the single most important equation
in the field of information theory. Indeed, this is the equation that defines
information theory and that is therefore at the foundation of our modern
information society. It was proposed by Claude Shannon in 1948 [58]1:

C = B log2

(
1+

S
N

)
(1.1)

This equation features prominently in the first few pages of any text on
information or communication theory, so it is not necessary to discuss it
in any depth here. The form of the equation is recognizable, however. It
formalizes what was said in the first paragraph, namely that how well you

1It is fortunate that Shannon chose to publish his work at all, since he was reportedly none
too impressed with it, and published it only after repeated urging from colleagues.
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1. INTRODUCTION

can communicate (C) depends on how much effort you spend (S) and what
the noise level is (N).

Noise then, if you like, is the foundation of the foundation.

Not only in information theory does noise occupy a central position, but al-
so in physics. Any dissipative element exhibits thermal noise. This includes
(but is not limited to): wires, resistors, transistors, diodes, inductors, capa-
citors, transformers, MOSFETs, and opamps. It is a safe bet that if it can
be soldered, requires batteries or can be plugged into the mains, it exhibits
thermal noise.

Thermal noise is not the only type of noise, however. Many components
exhibit excess noise at low frequencies. The term ‘excess’ indicates ‘mo-
re than expected from the theory of thermal noise’. This excess noise is
variously referred to as ‘flicker noise’ or ‘LF noise’, and it includes such
phenomena as 1/ f and Random Telegraph Signal (RTS) noise.

The low frequency (LF) noise of MOSFETs is particularly interesting: a
modern MOSFET is so small that the effects of single electrons can be
seen. One example of such noise is in figure 1.1.

Time →

C
ur

re
nt

 →

Figure 1.1: LF noise of a 0.18 µm2 MOSFET. The abrupt jumps are caused
by single electrons. Superimposed on this are other types of noise.

It is remarkable that single electron effects can be observed so easily: the ex-
periment takes place at room temperature, and apart from one minimal-area
MOSFET (the CPU in your computer contains tens of millions of these),
you only need a preamplifier (e1.50) and an oscilloscope.

LF noise in MOSFETs is not only fascinating for the detailed view it provi-
des into the chaotic interior of the MOSFET, but it also gets a lot of attention
because it forms a significant limitation to the practical use of the MOSFET
in an electronic circuit.

2



LF noise and analog circuit design

1.2 LF noise and analog circuit design

Design of analog CMOS circuits is a complex tradeoff between resources
and goals. The aim is typically to realize a high speed, high accuracy design,
with minimal expenditure of supply power and chip area. In this context,
an optimal design is one that expends minimal resources to just achieve
the specified goals. If specifications are not met the design is unsuccessful
and if specifications are exceeded, or if the specifications are met whilst
expending more than the minimally required resources, the design is not
optimal. In the search for design optimality, it is extremely useful to know
where the physical limits are so one can strive to reach them, and at the
same time ensure that the physically impossible is not attempted.

In CMOS, the smallest signal that can be reliably processed depends on
the noise of the MOSFET. The MOSFET’s dominant sources of noise are
thermal noise due to the dissipative character of the conducting channel and
LF noise.

LF noise in MOSFETs has been studied for many decades. There is ample
data indicating the presence of a bulk 1/ f noise source in homogenous
semiconductor samples [26]. It it reasonable to assume this is also present
in a MOSFET, however MOSFET LF noise behaviour is dominated by the
silicon surface, at the interface between the silicon and the gate oxide. The
Si-SiO2 interface is imperfect for at least two reasons. First, the crystalline
structure of Si does not fit the amorphous SiO2 and this leads to so-called
‘dangling bonds’. Secondly, during processing, impurities are introduced
at the interface and in the oxide. Both mechanisms give rise to localized
energy states known as ‘traps’. These traps generate the RTS noise of figure
1.1 that dominates MOSFET LF noise behaviour.

In 1991, it was noted for the first time [6, 7] that MOSFET LF noise is
reduced when the device is subjected to large signal excitation (LSE). In
other words, turning it ‘off’ for some time before turning it ‘on’ reduces its
noise when it is ‘on’. This means that the LF noise of the device not only
depends on the present bias state of the device but also on the bias history
of the device. Soon afterwards this effect was associated with the emptying
of traps that cause RTS noise [14]. In 1996, the effect was independently
discovered by Hoogzaad and Gierkink at the University of Twente [19],
leading to a demonstration of the LF noise reduction effect by LSE in a ring
oscillator [20] and in a coupled sawtooth oscillator [36].

3



1. INTRODUCTION

1.3 Scope of this thesis

In this thesis, we cover the issues that need to be addressed before LF noise
reduction by LSE can be applied to analog circuit design. Detailed physical
modelling of trap behaviour under LSE is given in [38].

For a long time, Moore’s self-fulfilling prophecy [52] has made MOSFET
dimensions go down according to a fairly well described exponential curve.
This is not only very important to device physicists who use this curve to
predict what process hurdles will need to be overcome and when this will
need to be done, but it is also very interesting for people designing analog
circuitry.

In chapter two, an introduction is given to the mathematics and physics of
LF noise in MOSFETs.

Existing LF noise models are combined with what is known about CMOS
process downscaling, which allows predictions to be made as to what will
be the dominant problems in future process generations. From this, we
show that LF noise, in contrast to many other problems, is not something
Moore’s ‘law’ will automatically solve, thereby justifying the work in this
thesis.

Before LF noise under large signal excitation can be understood, data needs
to be gathered. LF noise shows considerable spread: different nominally
identical devices may have LF noise powers that vary by several orders of
magnitude. For small-area devices, the spread is worse. This makes LF
noise characterization challenging: it is not possible to characterize a single
device and generalize its behaviour; large numbers of devices are required
before general conclusions can be drawn. LF noise behaviour under LSE is
also very variable: not only the magnitude of the noise change varies, but
the direction as well: sometimes subjecting a device to LSE will increase
its LF noise, while other devices show an LF noise decrease under the same
conditions.

p-Channel devices are sometimes favoured by designers because they ex-
hibit less LF noise than n-channel devices. Also, it is often noted that
p-channel devices have LF noise that can best be explained using the ∆µ
model, whereas n-channel devices are often seen to behave in accordance
with the ∆N model. In the light of these discrepancies, it is by no means
certain that LF noise under LSE will behave in the same manner in both
types of devices.

In chapter three, LF noise measurements under LSE for both device types

4



Scope of this thesis

are compared. Another issue that is investigated is the relation between the
change in LF noise under LSE and how the LSE is applied to the device:
which device terminals allow the LF noise to be influenced? Finally, large
numbers of nominally identical devices are measured and the spread of their
LF noise and their LF noise under LSE is characterized.

Having characterized the effect, it needs to be removed from the realm of
‘just another interesting effect’ to something that can be related to establis-
hed device parameters. Initially, not a lot was known about the physical
origins of the LF noise measured, but it rapidly became apparent in mea-
surements that the noise observed was RTS-dominated. Both in the time
domain where the characteristic two-level signal of an RTS was observed,
and in the frequency domain, where the shape of the LF noise power spec-
tral density was seen to vary between f 0 and f−2.

In chapter four, the experimental observations are related to the vast amount
of known data on the subject of interface traps. This allows us to model
why the LF noise usually decreases under LSE: LF noise under LSE probes
traps nearer the center of the bandgap, and the trap density there is lower
than near the bandgap edge. With our model, based on Shockley-Read-Hall
theory applied under non-steady-state conditions, LF noise behaviour under
LSE follows logically from the characteristics of the device, and no addi-
tional fitting parameters are required. An LF noise simulator based on the
same model is also presented.

Regarding application of LF noise reduction by LSE, the important questi-
on to be answered is of course how it compares to established techniques.
Unfortunately, on the whole, the established noise reduction techniques are
quite effective at reducing noise, so competing with them is no trivial task.
In addition, while LF noise reduction by LSE showed great promise in older
processes, the noise reduction in newer CMOS processes is much lower. In
correlated double sampling circuits, LSE may be applied but only in such a
way that the bias history for both sample moments is identical. When this
is not the case LSE is shown to be more likely to increase than to decrease
the noise. Only in RF circuits, where other techniques are not applicable
does LF noise reduction by LSE show some promise, especially since the
frequency of the LSE is not important for the LF noise performance.

In chapter five, the different ways in which LF noise reduction by LSE can
be applied to analog circuit design are explored. Three classes of circuits
are discussed and the applicability of LF noise reduction by LSE in each
class is treated. Though LF noise reduction by LSE can provide a benefit
in specific cases, the accuracy of steady state LF noise models still needs to

5



1. INTRODUCTION

improve a lot before the limited benefits of the LSE technique can become
useful.
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Chapter 2

Background

2.1 Introduction

In this chapter, the mathematical and physical background to the remain-
der of this work will be presented. We start with a brief summary of some
important concepts in time and frequency domain analysis. Having done
that, some important concepts in stochastics are reviewed. Next, the clas-
sical MOSFET square law approximation that forms the basis for a lot of
the classical LF noise modelling work is presented. Finally, the future of
LF noise in MOSFETs is treated. The framework presented in this chapter
forms the basis for the modelling work in chapter 4.

2.2 Time and frequency domain analysis

A brief review of some important concepts in frequency domain analysis
is presented. More exhaustive treatment of the subject matter can be found
in [12] or other textbooks.

Units of the Fourier Transform.

The Fourier transform is the basis of frequency domain analysis. Using the
Fourier transform we can analyse signals in the frequency and in the time
domain, however some care is required in the use of units. The Fourier

7



2. BACKGROUND

transform is defined by [12]:

x( f ) =
∫ +∞

−∞
x(t)e− j2π f tdt [Hz−1] FT

x(t) =
∫ +∞

−∞
x( f )e j2π f td f IFT (2.1)

It gives units for x( f ) of Hz−1 if the input signal x(t) is dimensionless.
It is common practice (eg. done by programs such as Maple) to substitu-
te ω = 2π f in this definition, but this does not change the units of x(ω)
which remain Hz−1. A more logical approach, if rad/s is used as the unit
of frequency, is to divide the FT by 2π; this gives units of (rad/s)−1 in the
frequency domain. This requires that the IFT is multiplied by 2π to ensure
consistency. This definition is used by Machlup [48].

The curious but common practice of expressing frequency in rad/s while at
the same time using a frequency domain description in which the units are
Hz−1 is a frequent source of confusion.

Use of the DDFT to approximate the CCFT

A digital computer is used to calculate the Fourier transform of time-domain
signals. This means the continuous-time to continuous-frequency Fourier
transform (CCFT) cannot be used, but rather we have to use the discrete-
time to discrete-frequency Fourier transform (DDFT) to approximate the
continuous-time case. The definition of the DDFT of a time signal (as used
by Matlab) is:

x(k) =
N

∑
n=1

x(n)e
− j2π(k−1)(n−1)

N 1 ≤ k ≤ N (2.2)

The inverse transform is given by:

x(n) =
1
N

N

∑
k=1

x(k)e
j2π(k−1)(n−1)

N 1 ≤ n ≤ N (2.3)

In these definitions, x(n) is the sampled time-domain signal with n the sam-
ple number between 1 and N, and x(k) is the sampled frequency domain
signal with k going from 1 to N, representing the sample frequency fs. N
is the number of points so that the total time T = Nts where ts is the sample
period. The relation between the CCFT and the DDFT is given by [12]:

x( f ) = x(k)ts [Hz−1] (2.4)

8



Stochastic signals

The DDFT will cover the frequency range of 0 to fs/2 in N/2 steps. The
frequency resolution (distance between adjacent samples in the frequency
domain) is 1/T [Hz]. This is also the lowest frequency measurable.

One-and two sided frequency domain description of signals

A common cause of confusion is the indiscriminate mix of one- and two-
sided frequency domain descriptions. The Fourier transform, which in es-
sence defines the frequency domain, gives rise to a frequency domain de-
scription of the signal that goes from f = −∞ . . .+∞, and this is mathe-
matically the most complete way of describing a signal in the frequency
domain. If x(t) is real, however, x( f ) will have a negative half that is the
complex conjugate of the positive half. In these cases, giving the complete
x( f ) is redundant, and it is sufficient to give only the positive half of x( f ).
To preserve the total energy of the signal, x( f ) is then multiplied by

√
2.

The resultant x( f ) is known as ‘one-sided’. For real signals, a one-sided
frequency-domain description is convenient and adequate. However, when
transforming back to the time domain, it is important that the appropriate
integration limits be used: −∞ and +∞ for a two-sided x( f ) and 0 and +∞
for a one-sided x( f ).

2.3 Stochastic signals

In describing noise, it is useful to briefly review some important concepts
in stochastics. A stochastic signal is random; i.e. the value of the signal at a
particular time cannot be predicted. The signal can, however, be described
in terms of its stochastic parameters. Some useful stochastic parameters are
defined in this section. Random signals are then examined in the frequency
domain, and finally some important random signals (RTS noise and 1/ f
noise) are discussed in terms of the definitions given.

Describing stochastic signals.

The expected value of a random signal x(t) is its time average. It is given
by

E [x(t)] = lim
T→∞

1
T

∫ T/2

−T/2
x(t)dt (2.5)

9
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The nth moment of a signal is the expected value of x(t)n. It is given by:

E[x(t)n] = lim
T→∞

1
T

∫ T/2

−T/2
x(t)ndt (2.6)

Some common moments are:

• The 1st moment of x(t) is its average, often denoted by mx.
• The 2nd moment of x(t) is the total power of the signal.
• The 2nd moment of [x(t)−mx] is its variance, var(x). This is the AC

power of the signal.

Higher order moments may be used for mathematical and formal comple-
teness, but they have limited practical significance.

The autocorrelation function of a signal is defined by:

Rxx(t, t + τ) = E [x(t) x(t + τ)] (2.7)

Rxx(t, t) =E [x(t) x(t)]

=E
[
x(t)2]

=2nd moment of x(t)
=total power of the signal (2.8)

In a similar way, the autocovariance is given by:

Cxx(t, t + τ) = E [(x(t)−mx) (x(t + τ)−mx)] (2.9)

Cxx(t, t) =E [(x(t)−mx) (x(t)−mx)]

=E
[
(x(t)−mx)2]

=var(x) (2.10)

The autocorrelation function and the autocovariance function differ only in
that the autocorrelation function encompasses DC whereas the autocova-
riance function does not. The autocorrelation function is therefore more
complete, and the autocovariance function should only be used in cases
where the random signal in question has a non-zero mean and the intent is
specifically to disregard this mean.

Ergodicity, stationarity and cyclostationarity

A random signal is said to be stationary if the moments of the random signal
are not a function of time. A signal is ‘strictly stationary’ if this is satisfied

10
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for all its moments. A signal is ‘wide-sense stationary’ if this is satisfied for
all moments up to and including the second moment.

If a signal is stationary, the autocorrelation function given in eq. 2.7 will no
longer be a function of the absolute time t but only of the time difference τ:

Rxx(t, t + τ) = Rxx(τ) (2.11)

A random signal is said to be ergodic if the ensemble average (average over
a number of realizations) is equal to the time average of one realization of
the signal. A signal is wide-sense ergodic if the first and second moments
are ergodic, and ergodic in the strict sense if all its moments are ergodic.
If a random signal is ergodic, it must also be stationary. A signal whose
moments are periodic in T is said to be cyclostationary in T .

Frequency domain analysis of stochastic signals: the PSD

The PSD and the Wiener-Khinchin theorem

The Power Spectral Density (PSD) of a signal is a plot of the power per
unit of bandwidth against frequency. The units of a PSD are W Hz−1. The
units V2Hz−1 or A2Hz−1 also find common usage, in those cases a constant
impedance is assumed. The Wiener-Khinchin theorem allows us to go from
the time domain to the frequency domain. It states that the PSD of a signal
is the Fourier transform of the autocorrelation function.

Sx( f ) = FT(Rxx(t, t + τ)) (2.12)

The power of the signal in the frequency domain and in the time domain
is equal, as shown by equation 2.13. Care must be taken to use the correct
units for Sx( f ). If integrating over f , the units for Sx( f ) must be in terms of
power per Hertz. ∫ +∞

−∞
Sx( f )d f = Psignal = E

[
x(t)2] (2.13)

The PSD can also be calculated without first calculating the autocorrelation
function. This is sometimes referred to as the ‘direct’ way of calculating
the PSD [12]:

Sx( f ) = lim
T→∞

|x( f )|2
T

(2.14)

The PSD contains less information than the time-domain signal. The first
way of calculating the PSD (eq. 2.12) discards information when the au-
tocorrelation function Rxx is computed; different time domain signals may
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have the same autocorrelation function. The second way of calculating the
PSD (eq. 2.14) discards phase information by taking the magnitude of x( f ).
Though the PSD of a random signal is very useful, a time-domain descrip-
tion is formally more complete.

The PSD of a cyclostationary signal

A signal which is cyclostationary in T will have moments that are periodic
in T . The autocorrelation function of such a cyclostationary signal will also
be periodic in T ; i.e.

Rxx(t, t + τ) = Rxx(t +T, t +T + τ) (2.15)

Additionally, the autocorrelation function at any particular time t will ha-
ve periodic components. Such an autocorrelation function can in theory be
used to calculate the time-variant PSD of the cyclostationary signal by ri-
gourous application of the Wiener-Khinchin theorem, but this not always
necessary. A more productive approach is often to first ‘stationarize’ the
signal by averaging the moments of the signal over one period, and then
Fourier transforming to find the ‘stationarized’ PSD [16]. Stationarizing
the signal may equivalently be done by modelling the time reference as a
random variable that is uniformly distributed over one cycle. The observer,
in both cases, has no knowledge anymore of the phase of the signal. This
approach is therefore valid whenever the ‘measuring’ system is not synchro-
nized with the cyclostationary noise source, for example when a spectrum
analyser is used to measure cyclostationary noise.

Random Telegraph Signals

A Random Telegraph Signal (RTS) is shown in fig. 2.1. It is a time-
continuous, amplitude-discrete signal. The conditional probability of a tran-
sition from one state to another (given that it is in that particular state) is
proportional to dt; this makes the time spent in each state (‘1’ and ‘0’ in the
figure) exponentially distributed.

This can be understood as follows: if the conditional probability of a tran-
sition from a state, given that the signal is in that state, per unit time, is
constant, then the absolute probability of a transition from that state is pro-

12



Stochastic signals
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Figure 2.1: A Random Telegraph Signal (RTS)

portional to the probability of being in the state. Mathematically:

P(transition) =P(transition|state) P(state)
P(transition|state) ∝ dt

P(transition) ∝ P(state)dt

dP(state) ∝ P(state)dt

dP(state)
dt

∝ P(state) (2.16)

Equation 2.16 is a first-order differential equation that can be solved to give
an exponential P(state)(t).

The RTS is completely characterized by three parameters: The amplitude,
the mean ‘high’ time and the mean ‘low’ time. The autocorrelation function
and PSD of an RTS will be derived. The derivation follows Machlup [48].
For mathematical convenience, the amplitude is chosen as 1, and the two
states of the RTS are named ‘0’ and ‘1’. The autocorrelation function of the
RTS is given by:

RRTS = E [RTS(t) RTS(t + τ)]

= ∑
i j

[
xi x j P(x(t) = xi) P(x(t + τ) = x j|x(t)=xi

)
]

(2.17)

Since one of the states is called ‘0’, three of the four terms in this sum
vanish, and we have:

RRTS = 1×1×P(x(t) = 1)×P(ntrans is even, given a start in state 1)
= P(x(t) = 1) P11(τ) (2.18)
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If the mean ‘high’ time is denoted by τ1 and the mean ‘low’ time by τ0 then
the probability of being in state ‘1’ at any particular time is given by

P(x(t) = 1) =
τ1

τ0 + τ1
(2.19)

and the autocorrelation function is found as

RRTS =
τ1

τ0 + τ1
P11(τ) (2.20)

P11 can be found by first realizing

P11(τ)+P10(τ) = 1 (2.21)

We can then write:

P11(τ +dτ) = P10(τ)
dτ
τ0

+P11(τ)
(

1− dτ
τ1

)
(2.22)

In words: An even number of transitions in time τ +dτ , given that a start is
made in state ‘1’, is possible in two ways: either an odd number of transiti-
ons in time τ followed by a transition from ‘0’ to ‘1’ in time dτ , or an even
number of transitions in time τ followed by no transition from state ‘1’ to
‘0’ in time dτ . If the time dτ is made small enough, the probability of more
than one transition in time dτ is negligible. Substituting eq. 2.21, the limit
can then be taken for dτ → 0 to arrive at the differential equation for P11:

dP11

dτ
+

(
1
τ1

+
1
τ0

)
P11 =

1
τ0

(2.23)

This differential equation can be solved using the initial condition P11(0) =
1 to arrive at:

P11(τ) =
1

τ1 + τ0

[
τ0e

−
(

1
τ0

+ 1
τ1

)
τ + τ1

]
(2.24)

This leads to:

RRTS(τ) =
τ1

(τ1 + τ0)2

[
τ0e

−
(

1
τ0

+ 1
τ1

)
τ + τ1

]
(2.25)

Fourier transforming the autocorrelation function, the spectrum of the RTS
can be found:

SRTS(ω) =
∫ +∞

−∞
RRTSe− jωτdτ [Hz−1]

= 2
τ0τ1

(τ0 + τ1)2

(
1
τ0

+ 1
τ1

)
ω2 +

(
1
τ0

+ 1
τ1

)2 +2π
(

τ1

τ0 + τ1

)2

δ (ω) (2.26)
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Figure 2.2: PSD of an RTS; f0RTS = 100 Hz

This is a Lorentzian spectrum. Ignoring the DC term and making two sub-
stitutions, the result is:

β =
τ0

τ1

ω0RTS =
1
τ0

+
1
τ1

[rad/s]

SRTS(ω) = 2
β

(1+β )2

1
ω0RTS

1

1+ ω2

ω2
0RTS

[Hz−1] (2.27)

A PSD of an RTS is given in fig. 2.2. The LF power of the RTS is inversely
proportional to the RTS corner frequency, ω0RTS. The final term defines
the frequency dependence of the RTS: flat at low frequencies and decaying
with 1/ω2 above the RTS corner frequency. Note that the spectrum of the
RTS is symmetrical with respect to τ1 and τ0; only the DC term is sensitive
to the difference. The power of the PSD depends on the ‘asymmetry factor’
β . This is shown in fig. 2.3. If β = 1; i.e. τ0 = τ1, the PSD of the RTS will
be at a maximum.
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Figure 2.3: RTS noise power as function of the asymmetry of the RTS.
ω0RTS = 1, amplitude = 1. Maximum power for β = 1 (symmetrical RTS).

1/ f noise as a stochastic signal

Pure 1/ f noise is described by a PSD as follows:

S1/f =
K
f

(2.28)

In this equation, K is an arbitrary constant. This is a strictly mathematical
construction, as pure 1/ f noise cannot be observed in practice, since an
infinite observation time is required to ascertain that the spectrum indeed
has a 1/ f character. Even though ‘pure’ 1/ f noise looks very simple in
equation form, and it is therefore tempting to use it to model the physical
phenomena that can be observed, it is problematic in that the integral of
the PSD is not convergent and therefore ‘pure’ 1/ f noise implies an infinite
signal power (eq. 2.13). This is not physically plausible. If a mathematical
model of a physical process that has a 1/ f character in the observable range
of frequencies is desired, a more complex model is required. A rather prag-
matic solution to the problem is given by Hooge and Bobbert [25]. Since
the integral of pure 1/ f noise does not converge, some lower limit frequen-
cy below which the noise PSD gets an f 0 shape must be assumed, as must
some upper limit frequency above which the noise PSD gets an f−2 shape.
Neither of these areas are observable, the lower limit due to the limits on
observation time (see, for example [50]), and the upper limit due to thermal
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noise, so these rather practical assumptions suffice. The PSD may now be
integrated in three parts to find the power of the signal:

Psignal = 2[
∫ fl

0

K
fl

d f +
∫ fh

fl

K
f

d f +
∫ +∞

fh

K fh
f 2 d f ]

= 2[ K + K ln(
fh
fl

) + K ] (2.29)

Choosing fl suitably low and fh suitably high, we have a description of
observable 1/ f noise. A suitable choice for fl and fh is still required but
within rather wide limits, this is not critical. Moreover, if they are far en-
ough apart, the power contribution of the LF and HF part of the integral is
not significant, and this justifies the convenient choice of the shape of the
spectrum in those parts.

The problem that the integral of the PSD of pure 1/ f noise does not con-
verge is tackled in another way [32, 49] by modelling 1/ f noise as a non-
stationary random process. This makes the variance and the PSD time de-
pendent. Observing such a process for a limited time always gives a finite
variance.

2.4 MOSFETs

Square law approximation

The current-voltage behaviour of a MOSFET can be described by the square
law model, also known as the Sah-model [55]. Though this view of the
MOSFET from 1964 does not take into account short-channel effects, it
is nevertheless useful because it gives insight into the bias and geometry
dependencies of many of the MOSFET noise models.

In strong inversion,

ID =
W
L

µC�
ox[VGTVDS − 1

2
V 2

DS] (2.30)

VGT is the gate-threshold overdrive voltage, VGT =VGS-VT. For low VDS,
expression 2.30 reduces to

ID =
W
L

µC�
ox[VGTVDS] (2.31)
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In saturation, the voltage across the channel is VGT and the expression be-
comes:

ID =
W
L

µC�
ox[

1
2

V 2
GT] (2.32)

Transconductance is given by:

gm =
W
L

µC�
oxVDS (linear region)

gm =
W
L

µC�
oxVGT (saturated region) (2.33)

An estimate for the number of free carriers in the device can be made by
taking the total inversion charge and dividing by the elementary charge q.

Nlin =
C�

oxVGTWL
q

Nsat =
2
3

Nlin (2.34)

The factor 2/3 in saturation comes from the integration of the channel char-
ge from source to pinch-off point [45, 63].

Thermal noise in a MOSFET

Before going into 1/ f noise it is relevant to briefly examine the equations
governing the thermal noise of a MOSFET. In a resistor, thermal agitation
of the electrons gives rise to thermal noise. It can be shown [12] that the
(double sided) PSD of thermal noise is given by:

Sth = 2R
h| f |

eh| f |/kT −1
[V2Hz−1] (2.35)

For | f | << kT/h, this simplifies to the well known

Sth =2RkT [V2Hz−1] (double sided)

=4RkT [V2Hz−1] (single sided) (2.36)

It is common practice to use single sided spectra and it is the convention
followed in this thesis. The channel of a MOSFET behaves as a resistor,
and it exhibits corresponding thermal noise.

SID = 4kTgchannelξ [A2Hz−1] (2.37)
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gchannel is the conductance of the channel, given by ID/VDS in the linear re-
gime, and to a first order approximation by ID/VGT in saturation. The factor
ξ is 1 for low VDS, and more than 1 when the channel shows non-linearity,
as it does for higher VDS and in saturation. [1] On theoretical grounds, ξ can
be shown to be 4/3 in saturation.

In the linear regime with ξ = 1, this leads to:

SID =
4kT ID
VDS

SVG =
4kT ID
g2

mVDS

=
4kT

µ2C�2
ox

L2

W 2

ID
V 3

DS

=
4kT
µC�

ox

L
W

VGT

V 2
DS

(2.38)

In saturation:

SID =
4kT ID
VGT

ξ (2.39)

Filling in the expression for ID and gm leads to the oft-seen1

SID =4kTgm
ξ
2

SVG =
4kT ξ

2

gm
(2.40)

which is a reasonable approximation but which gives little insight into the
physics of MOSFET noise because it insinuates that: (a) gm is somehow
very important to the thermal noise of the MOSFET, and (b) the MOSFET
exhibits ‘less than thermal’ noise, whereas in reality, (a) thermal noise ori-
ginates in the channel and (b) the non-linear V/I characteristic of the con-
ducting channel makes the noise worse, not better. The familiar form of eq.
2.40 is just an unfortunate coincidence (though useful for circuit design as
gm is often constrained). gm Can be filled in:

SVG = 4kT
ξ
2

L
W µC�

oxVGT
(2.41)

From which it can be seen that gate-referred thermal noise in a MOSFET is
proportional to the absolute temperature T , L/W , and inversely proportional

1In literature, ξ/2 is often denoted as γ
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to C�
ox. In the linear region, it is proportional to VGT/V2

DS, and in saturation,
it is inversely proportional to VGT.

2.5 LF noise modelling

MOSFETs not only exhibit thermal noise but also significant LF noise. The-
re are different physical models for MOSFET LF noise, which will be de-
scribed in this section. In MOSFETs with a small number of free carriers,
single-electron trapping-detrapping events generate RTS noise.

In order to better understand the different LF noise models, we will first
derive the dependence of the relative conductivity fluctuation on the free
carrier concentration. This enables us to identify the different physical me-
chanisms that cause conductivity fluctuations. Current in the channel of a
MOSFET is carried by mobile charge carriers.

σ = nqµ [CV−1s−1m−1] (2.42)

If the conductivity σ fluctuates, this is due to either µ fluctuating, n fluctu-
ating, or it could be predominantly due to fluctuations in µ that result from
fluctuations in n.

Externally, only the conductivity can be observed, but we can ascertain
which parameter is fluctuating by examining the dependence of the rela-
tive conductivity fluctuation on the carrier concentration n: If a fluctuation
in the conductivity is attributed to a fluctuation in mobility, we may write:

S∆σ
σ2 =

S∆µ

µ2 (2.43)

which is not dependent on n. If, on the other hand, a fluctuation in the
conductivity is attributed to a fluctuation in the concentration of mobile
carriers n,

S∆σ
σ2 =

S∆n

n2 (2.44)

which can be rewritten as:

S∆σ
σ2 =

S∆n

n
1
n

(2.45)

S∆n/n is independent of n if individual ∆n events are considered to be un-
correlated, so S∆σ /σ2 is proportional to 1/n. The third possibility is that
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mobility fluctuations caused by number fluctuations are the dominant sour-
ce of conductivity fluctuations. In this case,

∆σ =qn
dµ
dn

∆n

S∆σ =q2n2(
dµ
dn

)2S∆n

S∆σ
σ2 =

( dµ
dn )2S∆n

µ2

=
( dµ

dn )2 S∆n
n

µ2 n (2.46)

which means the relative conductivity fluctuations are now proportional to
n. Using equation 2.34 the different dependencies of the noise on n can be
related to VGT and C�

ox.

In the ∆µ model, LF noise in MOSFETs is related to fluctuations in µ .
The ∆N model assumes fluctuations in n are the dominant source of LF
noise. The Hung model [29] postulates the presence of all three LF noise
mechanisms. The implications of the models will be reviewed below.

1/ f Noise in a MOSFET, ∆µ model

Measurements on homogenous semiconductor samples [26] indicate that in
those samples, the observed 1/ f noise obeys the relation

SI

I2 =
αH

f N
(2.47)

This is known as the Hooge equation. It states that the spectral density
of current noise, normalized to the square of the DC current, is inversely
proportional to N, the total number of free carriers in the system, and f ,
the frequency. Regarding the inverse dependence on N, this indicates that
in those samples, the observed 1/ f noise was a bulk rather than a surface
phenomenon.

Applying Hooge’s equation to a MOSFET and assuming that individual
noise sources in the channel of the device are uncorrelated, it can be shown
that [34, 56]:

SVG =
αH

f
1

WL
q

C�
ox

(VGT − 1
2

VDS) (2.48)
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In the linear region with low VDS this reduces to:

SVG =
αH

f
1

WL
qVGT

C�
ox

(2.49)

and in saturation (substituting VGT in the place of VDS as the voltage over
the channel) it becomes:

SVG =
αH

f
1

WL
qVGT

2C�
ox

(2.50)

The ∆µ model predicts that SVG should scale with the inverse of the devi-
ce area, should be linearly dependent on VGT and inversely dependent on
C�

ox. p-Channel devices are often reported to exhibit 1/ f noise behaviour in
accordance with the ∆µ model [10, 56].

Substituting

VGT =

√
2IDL

W µC�
ox

(2.51)

it may be concluded that in saturation, with ID kept constant, the gate-
referred noise is proportional to W−3/2L−1/2.

Given a measured SVG at a particular frequency, it is always possible to cal-
culate αH if the parameters of the device are known. This does not have to
imply a ∆µ origin of the LF noise (although αH is often primarily associa-
ted with the ∆µ model), but can be useful simply as an empirical measure of
the LF noise normalized to the drain current, the frequency and the number
of free carriers in the device.

1/ f Noise in a MOSFET, ∆N model

Number fluctuations in a MOSFET can also cause low frequency noise.
Number fluctuations are caused by trapping and detrapping of mobile car-
riers in traps at the interface or in the oxide. The area, bias and C�

ox depen-
dency predicted by this so-called ∆N model will be reviewed. In the linear
region,

SVG =
SQSS

C�2
ox W 2L2

=
q2S∆N

C�2
ox W 2L2

(2.52)
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SQSS Is the spectrum of surface state charge fluctuations. Assuming that
the noise sources in the device are uncorrelated, S∆N = S�

∆NWL may be
substituted to derive:

SVG =
q2

C�2
ox WL

S�
∆N

(2.53)

The spectrum of number fluctuations per unit area (S�
∆N) is independent

of the size of the device if the device is uniform. This means, that like
the ∆µ model, the ∆N model predicts that the gate referred PSD of noise
should scale with the inverse of the device area. To a reasonable approxi-
mation, S�

∆N is not bias dependent. This is because the trapping process
is rate-limited by the number of available traps, not the number of availa-
ble free carriers. Hence, the ∆N model predicts that the gate-referred noise
PSD should be independent of VGT and proportional to C�−2

ox . n-Channel
MOSFETs are often seen to exhibit 1/ f noise behaviour in accordance with
the ∆N model.

Equation 2.53 is equally valid in the linear region and in saturation [18].
Since SVG is not dependent on VGT, eq. 2.53 gives the correct scaling re-
gardless of whether VGT or ID is kept constant.

McWhorter’s ∆N model

So far, the area and bias dependence of ∆N fluctuations has been addressed
without discussing what the shape of the spectrum described by S�

∆N is.
McWhorter was the first to show that a trapping/detrapping process can
lead to a 1/ f type spectrum [51]. His derivation will be briefly summarized
here.

A single trap gives rise to a Lorentzian PSD, as shown in section 2.3 above.
If a MOSFET contains a ‘large’ number of such traps, and these traps do
not interact, their PSD’s may be added. If the traps all generate an RTS with
the same amplitude, and their time constants are exponentially distributed,
the summation of their PSD’s will have a 1/ f shape. This is shown in
fig. 2.4. An exponential distribution of time constants may result from
a uniform distribution of the distance from the channel to the traps in the
oxide, if tunnelling is the mechanism by which charge carriers from the
channel interact with the traps [23].

There are some issues regarding the McWhorter model that deserve menti-
on:
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Figure 2.4: Addition of Lorentzian spectra results in a 1/ f spectrum

• The McWhorter model describes sufficient conditions for the emer-
gence of a 1/ f spectrum, not necessary conditions. For example,
in [53], far less stringent conditions for the emergence of a 1/ f spec-
trum from RTS noise are derived.

• If the RTS time constants are solely due to the distance of the trap in
the oxide, one would expect a low frequency cutoff for the 1/ f noise
in devices with very thin oxides. Such a cutoff has not been observed.

• The McWhorter model was derived in a time when devices were ‘lar-
ge’, and the postulate of a ‘large’ number of traps seemed reasonable.
In very small area devices, (eg Brederlow [9] measures 30..300 traps
per µm2 in a 0.25 µm process) averaging does not occur and the Mc-
Whorter model is not directly applicable.

• Measurements of RTS noise on small devices indicate that traps may
in fact interact with one another. [33].

Hung 1/ f noise model

The Hung 1/ f noise model [28, 29] is often used in circuit simulators. It
is based on a model of number fluctuations and correlated mobility fluctu-
ations. With suitable parameters, it is able to achieve excellent correlation
with measured results [71]. The basic form of the Hung 1/ f model for
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small VDS is given in [29]:

SVG ∝
kTq2

γ fWLC�2
ox

(1+αµN�)2 (2.54)

This equation expresses that the capture of a mobile charge carrier causes a
correlated fluctuation in mobility due to Coulomb scattering at the interfa-
ce. Depending on the strength of the coupling coefficient α , it predicts the
existence of three regions2.

For αµN� << 1, the model reduces to the simple ∆N model, predicting
SVG to be independent on VGT, and C�−2

ox .

For αµN� ≈ 1, the model states

SVG ∝
kTq2N�

WLC�2
ox

=
kTqVGT

WLC�
ox

(2.55)

Which is equivalent to the ∆µ model, predicting a dependency of SVG on
VGT C�−1

ox .

The third area of the Hung model is for αµN� >> 1, this is when mobility
fluctuations resulting from number fluctuations dominate. In this area, SVG

is proportional to V 2
GT.

RTS noise in MOSFETs

In MOSFETs with a small number of free carriers, RTS noise rather than
1/ f noise is observed. A useful review of the history of RTS observations
in MOSFETs is given in [33]. Assuming that:

• 1/ f Noise is caused by mobility fluctuations with a given αH,
• The RTS noise is pure ∆N, i.e. there is no mobility fluctuation as a

result of the Coulomb scattering from trapping,
• The RTS noise is visible if the amplitude of the RTS is larger than the

RMS value of the 1/ f noise in the observation bandwidth,

a simple condition can be derived [35] for the visibility of the RTS noise:

N ≤ 1
αH ln( fm(τc + τe))

(2.56)

αH is the Hooge empirical 1/ f noise factor, fm is the bandwidth of the
measurement setup, and τe and τc are the parameters of the RTS.

2Note that this α is not the same as αH used in the context of the ∆µ LF noise model.

25



2. BACKGROUND

Noise source
Scaling

W and L C�
ox (∝ 1/tox) VGT

Thermal W−1L C�−1
ox VGT (lin) V−1

GT (sat)

∆µ W−1L−1 C�−1
ox VGT

∆N W−1L−1 C�−2
ox V 0

GT

Correlated ∆N and ∆µ W−1L−1 C�0
ox V 2

GT

Table 2.1: Overview of LF noise models

The visibility of the RTS improves with smaller αH, smaller measurement
bandwidth and higher RTS corner frequency.

Overview

The important scaling properties of the different models are given in table
2.1. W and L scaling is given, as is the C�

ox and VGT dependency. Scaling
rules for the 1/ f corner frequency fc can be derived if so desired. Note
that whereas thermal noise is always present in the channel of a MOSFET,
and SID,th is non-zero for any VDS, this is not the case for LF noise. As
predicted by the different noise models, SID = 0 when ID = 0. Regarding
the ∆µ model, this is immediately obvious from equation 2.47. Regarding
the ∆N model, SVG does not go to 0 for VDS =0 (equation 2.53) but gm does,
thereby reducing SID to 0 for VDS =0.

2.6 The future of LF noise in MOSFETs

CMOS downscaling is expected to continue for a number of process gene-
rations [30]. A change in gate dielectric from SiO2 to a so-called ‘High-κ’
dielectric is expected by 2006 or 2007 [30]. This is expected to aggravate
trapping and associated LF noise problems, as high-κ gate dielectrics are
reported to have interface state densities one or two orders of magnitude
higher than SiO2 [69].

To investigate the effect of downsizing MOSFETs on their LF noise, a next
process generation is modelled by a shrink factor s. We discuss how this
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Current process generation Next process generation

tox tox/s

C�
ox s C�

ox

VDD VDD/s

VGT VGT

Table 2.2: Simple model for CMOS scaling

affects 1/ f noise. The upcoming change to high-κ gate dielectrics should
be considered in isolation.

The main difference between one process generation and the next (table
2.2) is the decreasing tox, leading to an increase in C�

ox. To prevent oxide
breakdown, this mandates an equivalent decrease of VDD. VT scales down
from one process generation to the next, but analog CMOS design over the
past few process generations has shown that VGT in typical analog circuits
does not change much from one generation to the next [2], so VGT is model-
led as constant. To evaluate how the 1/ f noise changes from one process
generation to the next, boundary conditions have to be selected. Several can
be chosen, and some are mutually exclusive. Some possibilities are:

• Keep σVT , the spread in VT, constant. This is realistic in the light
of the observation that VGT does not change much from one process
generation to the next. Using the relation for the spread in VT:

σVT =
AVT√
WL

(2.57)

where AVT is a constant proportional to tox, this means WL will have
to decrease by a factor s2 from one process generation to the next.

• Keep Atot, the total area, constant. This means WL will remain the
same from one process generation to the next. Keeping the total area
constant is equivalent to keeping the relative spread in VT; σVT/VDD

constant.
• Keep SNRth, the signal-to-thermal noise-ratio, constant. At con-

stant VT, keeping SNRth constant means keeping SVth constant. From
equation 2.40, this means L/W should increase by s from one process
generation to the next.

• Keep PDD, the supply power, constant. Since VDD is dropping by
a factor s, this means increasing ID by a factor s. Making use of
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PDD constant SNRth constant

Atot constant W 1 s−1/2

L 1 s1/2

WL 1 1

SVG (C0
ox/C−1

ox /C−2
ox ) 1/s−1/s−2 1/s−1/s−2

fc (C0
ox/C−1

ox /C−2
ox ) s/1/s−1 1/s−1/s−2

σVT constant W s−1 s−3/2

L s−1 s−1/2

WL s−2 s−2

SVG (C0
ox/C−1

ox /C−2
ox ) s2/s/1 s2/s/1

fc (C0
ox/C−1

ox /C−2
ox ) s3/s2/s s2/s/1

Table 2.3: The future of 1/ f noise. Downscaling by factor s under given
constraints. C0

ox/C−1
ox /C−2

ox refers to ‘correlated ∆N and ∆µ’, ∆µ and ∆N
1/ f noise models respectively

equation 2.32, this means keeping W/L constant from one process
generation to the next.

Either σVT or Atot can be kept constant, in combination with either PDD or
SNRth. This leads to the scaling rules for W and L as given in table 2.3.
It is up to the designer to decide which of the four possibilities is most
applicable to the situation in question. SVG Is probably the fairest indicator
of whether the 1/ f noise is becoming more or less in absolute terms while
fc, the 1/ f noise corner frequency, indicates the relative importance of 1/ f
noise compared to thermal noise.

The most realistic approach to scaling is to keep (a) SNRth and (b) σVT

constant (the lower right hand corner in table 2.3). In this way, we are (a)
comparing the LF noise to the thermal noise, and (b) keeping the matching
properties of the circuit the same. Under these conditions, fc will increase
for the correlated ∆N and ∆µ model and the ∆µ model, and remain unchan-
ged for the ∆N model. Other boundary conditions may be chosen to make
this evaluation (eg. in [71] a simulation-based rather than an analytical ap-
proach is used), but similar conclusions result.
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2.7 Conclusion

In this chapter, we have reviewed frequency and time domain analysis of
stochastic signals, and common LF noise models for MOSFETs and their
implications are discussed.

The dependence of the relative conductivity fluctuation (S∆σ /σ2) on the
free carrier concentration n is derived. This is the basis on which the diffe-
rent LF noise models for MOSFETs, namely the ∆µ , ∆N and the correlated
∆µ and ∆N models are distinguished.

It is expected that LF noise in small-area devices will continue to be RTS-
dominated. For future CMOS process generations, the relative importance
of LF noise compared to thermal noise is not expected to decrease. (table
2.3). The expected change in future CMOS processes from SiO2 to a high-
κ gate dielectric is expected to increase LF noise problems as trap densities
in high-κ gate dielectrics are much higher than in SiO2.
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Chapter 3

Measurement of LF noise under
large signal excitation

3.1 Introduction

In our study of LF noise under Large Signal Excitation (LSE) numerous
measurements of MOSFET LF noise behaviour under LSE have been per-
formed. In this chapter, the most important experiments and their results
will be presented. First, LF noise measures will be briefly discussed so that
these can be used to describe the results of the experiments. We review
the published data on the subject. Next, the most important measurement
results are presented. Factors that influence LF noise are presented; most
importantly: what is the waveform and amplitude of the large signal that
the device is subjected to and to what terminal of the device is it applied.
Device factors that influence noise and noise under LSE will be described;
such as process factors (in particular: tox, device size, and device polarity (n
or p-channel). There is a significant difference between measurements on
single selected ‘golden samples’, which exhibit spectacular behaviour when
subjected to LSE, and ‘real-world’ performance of randomly selected sets
of devices. Though both types of measurement are valuable, it is important
to be aware of this distinction. To investigate spread of LF noise and LF
noise under LSE, measurements of LF noise under LSE on large sets of
unselected devices are presented. Finally, we will summarize.
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Figure 3.1: 1/ f Spectrum

3.2 Measures for LF noise

LF noise may be examined in the frequency domain and in the time domain.
The two, though fundamentally related, give quite different insights in noise
behaviour. Both are useful.

LF noise in the frequency domain

Noise can be characterized by a plot of its Power Spectral Density (PSD).
The PSD gives the noise power per unit of bandwidth as a function of fre-
quency. The units of the PSD are W/Hz. This is often plotted on a loga-
rithmic scale by converting to decibels, using a suitable reference power.
In many practical experiments, the noise voltage or the noise current rather
than the noise power is measured. A constant load impedance is assumed,
and the relative noise power is simply expressed as V2/Hz, or as A2/Hz.
Again, decibels are commonly used, leading to the oft-seen dBV2/Hz (whe-
re the 0 dB reference is 1V2/Hz) or dBA2/Hz (where the 0 dB reference is
1 A2/Hz).

1/ f Noise derives its name from the 1/ f shape of its PSD as in fig. 3.1.

S1/f =
Kf

f γ (3.1)
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Figure 3.2: Spectrum of a Lorentzian signal

where Kf is a constant and γ is close to 1. A common limit for noise to be
classified as 1/ f noise is 0.9 < γ < 1.1 [27]. When examining LF noise
in small MOSFETs, a more complex spectrum with γ frequency dependent
and varying between 0 and 2 is often observed. This type of spectrum is
usually considered to consist of a summation of various so-called ‘Lorent-
zian’ spectra. A single Lorentzian has the following PSD:

SLorentzian =
Kl

1+( f/ f0)
2 (3.2)

In which Kl is a constant and f0 is the corner frequency of the Lorentzi-
an. Below f0, the PSD of the Lorentzian is flat; above f0 it it has a f−2

characteristic. A Lorentzian PSD is given in fig. 3.2.

When studying LF noise, it is often desired to compare the LF noise in the
steady state to the LF noise under LSE. Whereas the steady state spectrum
will generally have a reasonably regular form similar to that in fig. 3.1
or fig. 3.2, the measured noise spectrum under large signal excitation is
more complex: Not only will it contain the LF noise of interest, but also
harmonics of the excitation signal and associated modulated LF spectra. In
many cases, these modulated spectra are not of primary interest, as it is only
desired to quantify whether the large signal excitation has changed the LF
noise, and if so, in which direction and by how much.
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Figure 3.3: Spot noise measurement is suitable if PSD’s to be compared
have the same slope

Spot noise measurement

The difference between two spectra may be quantified in terms of the dis-
tance between them at a particular frequency. The ‘spot’ frequency at which
the noise measurement is made should be given, but the spot noise measure-
ment is only really suitable if the PSDs have the same slope for a significant
frequency range as, for example, in figure 3.3, so this is often not very criti-
cal. A spot frequency should be selected that is free from spurs (undesired
harmonic components in the PSD). The most obvious spur frequencies in
the lab that should be avoided are multiples of 50 Hz; several are visible in
fig. 3.3. The spot noise measurement is simple and insightful and is useful
for rapid noise estimates in the lab. However, being a measurement at a sin-
gle frequency, the spot noise measurement gives only limited information,
and it gives no information on the shape of the spectrum at all.

Integrated noise measurement

When the PSD’s to be compared are not parallel, for example in fig. 3.4
in which a significant Lorentzian component is seen in the steady state
measurement, the spot noise measurement will give very variable results
depending on the frequency at which it is applied, and it is no longer a
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Figure 3.4: Steady state and LSE noise

representative estimate of the difference between the two PSD’s. In such
cases, a better approach is to integrate the noise over some bandwidth and
compare the integrated noise of the PSD’s. Care should again be taken to
avoid spurs in the integration interval, and to give the best measure of noise,
the integration interval should be as wide as reasonable.

Systematic effects and ‘net noise reduction’

In some experiments, when comparing LF noise measurements in the steady
state to those under LSE, a correction needs to be made for the fact that
the device is ‘off’ for some of the time when it is subjected to LSE. One
such example will be treated here. In this experiment [65], the device is
periodically turned ‘off’ and ‘on’ in an abrupt manner and with a 50% duty
cycle. The two signals of which the PSD’s will be compared are given in
fig. 3.5.

If the steady-state noise is described by

n(t) (3.3)

the modulated signal can be described by

C(t) = n(t)B(t) (3.4)
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a) steady state bias

b) LSE.

t0 T/4 T/2- /4T- /2T

n(t)

C(t)

Figure 3.5: Systematic noise decrease under LSE: comparing equation 3.3
and 3.4

Where B(t) is a square wave varying between 0 and 1, and C(t) is cyclo-
stationary. Its PSD can be calculated by first calculating its cyclostationary
autocorrelation function RCC(t, t + τ), ‘stationarizing’ it by averaging the
autocorrelation function over one period [16], (this discards phase informa-
tion which is not important for the PSD), and finally Fourier transforming
it to obtain the PSD.

RCC(t, t + τ) = E[n(t)B(t)×n(t + τ)B(t + τ)] (3.5)

Since n(t) and B(t) are uncorrelated, this can be rewritten as:

RCC(t, t + τ) =E[n(t)n(t + τ)×B(t)B(t + τ)]
=E[n(t)n(t + τ)]×E[B(t)B(t + τ)]
=Rnn(t, t + τ)×RBB(t, t + τ) (3.6)

Rnn(t, t +τ) is the autocorrelation function of the noise. If the noise is stati-
onary, Rnn(t, t + τ) = Rnn(τ). RBB(t, t + τ) is not stationary (it is a function
of both t and τ) and needs to be stationarized first. Referring to fig. 3.5, we
first write:

RBB(t, t + τ) =1(t + τ +T/4)×1(−(t + τ)+T/4) for | t |< T/4

=0 for T/4 <| t |< T/2 (3.7)

In this equation, t is the time at which the autocorrelation function is cal-
culated, and τ is the time offset that describes the autocorrelation function
at that time. To stationarize this signal, the autocorrelation function is aver-
aged over one cycle. The stationarized autocorrelation function is denoted
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by RBBs.

RBBs(τ) =
1
T

∫ T/2

−T/2
RBB(t, t + τ)dt

=
1
2

1(
T
2

+ τ)+
τ
T

1(
T
2

+ τ)− 2τ
T

1(τ)

−1
2

1(−T
2

+ τ)+
τ
T

1(−T
2

+ τ) (3.8)

This is a triangular function of τ with height 0.5 and width (−T/2..T/2).
The Fourier transform can now be performed. The autocorrelation function
is a multiplication of

RCCs(τ) = Rnn(τ) RBBs(τ) (3.9)

This will give a convolution of the PSD of the noise and the PSD of the
square wave in the frequency domain. The relative amplitude of the base-
band alias and the first alias is most interesting. The baseband alias will
have a power of 1/4 relative to the steady state case and the nth alias will
have an power of 2/(nπ)2 relative to the steady state case. In the PSD, this
is -6.0 dB for the baseband alias and -6.9 dB for the first alias. The 3rd

alias will be at -16.5 dB. This is illustrated in fig. 3.6. Assuming that the
baseband alias of the PSD can be validly interpreted if the first alias is some
distance below the baseband alias of the PSD, the maximum frequency up
to which the baseband alias can be correctly interpreted can be derived if
we assume a 1/ f shape of the PSD:

fex

fmax
= 1+

4
1

2
π2 10

d
10 (3.10)

In this equation fmax is the highest frequency for which the baseband alias
can be validly interpreted, fex is the frequency of excitation, and d is the
distance in dB that is required between the baseband alias and the first alias.
If a 3 dB distance between the baseband and the first alias is required, the
baseband alias is free from aliasing up to a maximum frequency of 0.38 fex,
as can be seen in fig. 3.6.

LF noise in the time domain

In the time domain, the most obvious way to characterize a stochastic sig-
nal is by its autocorrelation function. If the signal is cyclostationary, it can
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Figure 3.6: 1st Alias limits measurement of baseband alias

be stationarized first and the PSD can then be calculated using the stationa-
rized autocorrelation function. However, stationarizing the autocorrelation
function (as is done when a PSD is examined) is not always desirable. For
example, in switched capacitor circuits, a noisy transistor that is subjected
to a large (on-off) bias transient is used to take a sample of a signal. The
cyclostationarity of the noise is relevant because the noise of the transistor
at a particular time in the period is relevant, and stationarizing the noise
by averaging the statistical parameters over the whole period is not approp-
riate [42]. For these sorts of situations a measure of noise at a particular
time following a bias transient will be defined. This will be called the time-
dependent noise.

Time-dependent noise

If the period of large-signal excitation is T , the time-dependent noise is
defined as the series of samples taken at time instants nT + toffset. n is the
number of the period (n = 1..nmax), and toffset is the time offset in the period
relative to the start of the period (fig. 3.7). The noise being subjected to LSE
is cyclostationary so the time-dependent noise series is stationary, but its
statistical parameters (including its mean and variance) may be dependent
on toffset. Extracting the time-dependent noise is equivalent to subsampling
the original noise with a sampling frequency of fex, so the variance of the
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Figure 3.7: Time-dependent noise

time-dependent noise is equal to the integrated noise PSD from 1/nmaxT to
the bandwidth of the noise at a particular point in the period. Referring to
fig. 3.7, if toffset > T/2 the time-dependent noise will be 0.

The time-dependent noise is an appropriate noise measure in systems where
the use of the noisy device is synchronous with the large signal that the
device is subjected to. Switched-capacitor circuits are an obvious example.
In these systems, the variance of the time-dependent noise is of primary
importance. The average value of the time dependent noise may also be a
function of toffset. This is important if the device is used at different times
following a bias transient. A good example of this is the correlated double
sampling circuit discussed in section 5.3

3.3 Review of published measurement results

In this section, previously published LF noise measurements under LSE
are presented. The first observation of the fact that LF device behaviour
depends on the bias history as well as on the bias state of the MOSFET dates
from around 1985, however this was not published until much later [70].
First published measurement results are from 1991 [7]; later we presented
more extensive measurement results on large-area HEF 4007 MOSFETs
[65].

In [70], Eric Swanson discusses the design of the Crystal Semiconductor
CS5016, a 50 kHz, 16 bit AD converter, which took place around 1985. A
slow tail in a comparator offset voltage was observed following a compara-
tor overdrive. Measurements were done on a 3 µm process from Orbit Se-
miconductor. It was also found (‘5x worse’) in 3N169 discrete MOSFETs.
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The problem was solved by periodically pulling the source of the compa-
rator transistors up to VDD. A few ns of such ‘flush time’ was found to be
sufficient to cure the effect, which was attributed to slow trapping and de-
trapping in the oxide. This is the first mention of the use of LSE to combat
low-frequency effects in MOSFETs. No mention is made of improved LF
noise characteristics of the transistors involved, though it is entirely possible
that this happened as a side effect.

In [6,7], Bloom and Nemirovsky present an experimental setup for and me-
asurement results of LF noise in Si-MOSFETs subjected to LSE at the gate.
Large MOSFETs were used (100/8 and 80/8 µm from a CMOS process
from ‘Technion’ in Israel), biased in the linear region and in saturation. The
switching frequency was 600 Hz, and noise measurements were done bet-
ween 1 and 100 Hz. A noise power reduction by a factor 3 was observed at
1 Hz. The effect was found to be independent of duty cycle for duty cycles
between 25% and 88%. Various other transistors were measured, and a noi-
se power reduction by a factor between 1.2 and 3.7 was observed at 1 Hz.
The observed noise power reduction showed little sensitivity to the position
of the sampling pulse within the ‘on’ period.

In [14], more noise measurements under LSE are presented by Dierickx and
Simoen. A noise reduction was found ‘Systematically on large-area devi-
ces’. It was observed that when subjected to LSE, ‘RTS noise disappears’,
and the suggestion is made that subjecting the device to LSE could be ‘a
possibility to separate the contributions of different sources of 1/ f noise in
MOSFETs.’ Experimental results are presented on 3.5/3.5 µm MOSFETs
from a 3 µm process from IMEC in Belgium. tox = 60 nm, And the devices
have no LDD. For four n-channel devices, an average noise decrease by a
factor 8.4 at 1 Hz was found. For four p-channel devices, this was a fac-
tor 3.9. The devices were in saturation. RTS noise was measured on four
0.4/0.8 µm MOSFETs with a total of 8 traps. This measurement was done
in the linear region. In steady state, τe was found to be independent of VGS,
while τc decreased with increasing VGS. Under LSE, the same behaviour
was observed, except for very low VGS, where τe was seen to decrease with
decreasing VGS. This is associated with accumulation.

In [20], Gierkink shows that the phase noise of a discrete ring oscillator
equipped with HEF 4007 MOSFETs depends on the amplitude of oscilla-
tion. Varying the amplitude of oscillation varies almost everything in the
oscillator, so measurements of upconversion were made using a pilot-tone
to calibrate the measurement setup. The remaining LF noise change after
calibration is attributed to the LF noise change of the devices. An 8 dB
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Figure 3.8: Noise measurement setup to measure LF noise in steady state
and under LSE

reduction in LF noise is noted. This is reported for one sample, though
measurements on devices from different manufacturers were performed.

In [65], we present measurements of HEF 4007 MOSFETs. A noise reduc-
tion due to LSE of 6. . . 8 dB was systematically found in these devices. The
devices are not specified for analog applications, and the process used is not
specified either. Hence, exact device size and oxide thickness is not known.
It is clear however that these devices are large-area (input capacitance of an
n-channel device is typically 5.5 pF) and that they have a thick gate oxide
(VT = 1.9 V, and the gate oxide breakdown voltage is > 18 V).

Figure 3.8 shows the measurement setup used to measure LF noise under
LSE as used in [65]. The cascode transistors serve to keep VDS constant
during the measurement, and the differential nature of the circuit (the two
DUTs are driven in-phase) helps make this setup immune to external noise
sources such as supply noise and noise from the signal generator. One of
the two resistors RD is variable to adjust for mismatch between the two
DUTs. The LSE applied to the gates of the device is typically a 50% square
wave with the high level of the square wave identical to the bias level of the
steady state measurement; in this way the steady state measurement may be
directly compared to the LSE measurement; bias dependency of LF noise
does not influence the measurement.

A typical measurement is shown in fig. 3.9. At low frequencies, 6 dB
between the LSE and the steady state curve is expected on mathematical
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Figure 3.9: LF noise measurement on HEF 4007 device

grounds; the observed difference is 14 dB of which 8 dB is attributed to the
decrease of LF noise due to LSE. Several devices were measured and an LF
noise decrease of this magnitude was consistently observed.

A measurement was also performed in which the frequency of excitation
was varied (fig. 3.10). The measurement results show that the frequency
of excitation is not important for the LF noise as long as the frequency of
excitation is high compared to the frequency of LF noise.

Finally, the ‘off’ voltage of the switching waveform was varied. It was
observed that the devices needed to be cycled well below threshold before a
significant noise reduction was seen. These results are plotted in fig. 3.11.

3.4 Large signal bias factors and their influence on LF
noise

Introduction

In this section experimental results are presented that show how MOSFET
LF noise under large signal excitation is influenced by different parameters
of the large signal waveform. We will review the dependence of LF noise
under LSE on:
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• The circuit configuration,
• The duty cycle,
• How far the device is turned ‘off’.

Circuit configuration

In a circuit, a MOSFET may encounter LSE in several ways. Depending
on the design of the circuit, either VG or VS may be periodically time va-
riant. VD is not critical to the behaviour of the MOSFET as long as it is
high enough to keep the device in saturation, and VB is not always available
as a separate terminal, or it may be shared between several devices. It is
therefore relevant to examine the effect of periodic LSE at the gate and at
the source. In particular, we want to find out whether there is a significant
difference between these two modes of excitation as far as the LF noise
performance of the MOSFET is concerned.

Comparative measurement method

To compare the effect of LSE at the gate and LSE at the source, the device
is turned off periodically by either:

• varying VG periodically between an ‘on’ value and an ‘off’ value whi-
le keeping VS at a constant voltage, or

• varying VS periodically between a low ‘on’ value and a high ‘off’
value, while keeping VG at a constant voltage.

The LF noise in each of these situations is compared to the LF noise in stea-
dy state. The three states to be compared are shown in fig. 3.12. To make
the steady state measurements directly comparable to the LSE measure-
ments, the ‘on’ bias state in each of the three situations is made identical:
the current is kept at 20 µA exactly. Depending on the W/L of the device,
this results in a device that is more or less strongly inverted.

In each of the three situations, the noise at the source terminal of the devi-
ce is measured using the measurement setup of fig. 3.13. Details of each
operating condition are given in table 3.1. The first half of the setup is fully
differential; i.e. all parts including the DUTs are duplicated and the pream-
plifier is differential. The large periodic signal is common-mode, and is
therefore attenuated by the common mode rejection ratio of the differential
difference amplifier. This reduces the dynamic range requirements of the
remainder of the measurement setup. Working differentially also helps to
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Figure 3.12: Comparison of three different bias conditions: (a) Steady state,
(b) LSE at gate, (c) LSE at source.

suppress interference from the measurement setup and the different voltage
sources such as Vext. The device noise of the two DUTs is uncorrelated and
their noise powers therefore add at the output.

The operating conditions of the different sources and switches is given in
table 3.1. Note that switches B and C are also operated for the constant-bias
measurement to make the operating conditions of the amplifiers as close
as possible to the switched gate or switched source case. In this way, the
possibility that the measurement results are caused by some transient effect
in the amplifier can be precluded since all the measurements drive the am-
plifier in the same way. Vext is an external voltage approximately equal to
the common-mode input voltage of the differential amplifier, that prevents
the amplifier from saturating when the device is disconnected from its input
(when switch B is open). It is also used to prevent VS from changing when
VG is varied.

Since ID is determined by the gate-source voltage VGS, the gate-referred
voltage noise (which is of interest) is equal to the source-referred volta-
ge noise (which is measured). The steady-state measurement is repeated
twice for each device to check whether the measurement is consistent and
reproducible. To further preclude possible effects of drift and temperature
differences, the steady state and the switched measurements on each device
are done in an alternate fashion.

For the LSE measurements, the device is turned on and off with a frequency
of 100 Hz. The noise is sampled for 5 µs immediately following the turn-on
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Figure 3.13: Measurement setup for LSE at gate and LSE at source

Steady state LSE at gate LSE at source

VG 2 V DC 0 V/2 V 50%
100 Hz

2 V DC

SW ‘A’ OPEN OPEN 50% 100 Hz

SW ‘B’ 50 % 100 Hz CLOSED Out of phase
with SW ‘A’

SW ‘C’ Out of phase
with SW ‘B’

CLOSED when
VG = 0 V

In phase with
SW ‘A’

Table 3.1: Operating conditions for the measurement setup for steady state,
LSE at gate and LSE at source
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Steady state LSE at gate LSE at source

VG 2.0 V (DC) Square wave, 0
V / 2 V, 50%,
100 Hz

2.0 V (DC)

VS Determined by
ID

Vext / determined
by ID

Square wave, 2.0
V / determined
by ID, 50%, 100
Hz

VD 3.3 V (DC) 3.3 V (DC) 3.3 V (DC)

ID 20 µA per
device

0 / 20 µA per
device

0 / 20 µA per
device

Table 3.2: Bias conditions for Steady state bias conditions, LSE at the gate
and LSE at the source.

transient. The sampling frequency is 200 MHz, giving 1000 data points for
each turn-on transient. After storage of the data (this takes approximately
1 second), the experiment is repeated. The experiment is repeated a total
of 500 times for each bias condition (steady state, LSE at gate, LSE at
source) for each sample. We want to determine the time-dependent noise
(see page 38). To this end, the time-domain records are first passed through
a lowpass filter with a cutoff frequency of 4 MHz to improve the LF noise
to broadband noise ratio. After that, a sample is taken of the time domain
data 0.5 µs after the turn-on transient. The variance of these 500 samples
is an empirical measure for the LF noise in a frequency range up to about
0.5 Hz in all three bias conditions.

Measurement results

Measurements in all three bias conditions were carried out on a set of
42 n-channel devices from one wafer. The devices are from an industri-
al 0.35 µm process. Several different device sizes were available, with a
W/L ratio of 0.8/0.35, 1.025/0.475, 1.125/0.525, 1.25/0.575, 0.5/0.35
and 5/0.35 µm. To assign equal weight to the different size devices, the
variance of the time dependent noise is multiplied by the device area to nor-
malize for the theoretical dependence of the LF noise on the area at constant
ID (see section 2.5). The bias conditions are given in table 3.2 below.
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An overview of the ‘LSE at gate’ and the ‘LSE at source’ measurements
is given in figure 3.14 below. Along the x-axis, the LF noise power in the
steady state is given, and along the y-axis, the LF noise power for LSE is
given. Different symbols differentiate between the measurements with LSE
at the gate and LSE at the source.

It is immediately apparent that the noise is very variable: the sample-to-
sample spread is over 2 orders of magnitude. The noise under LSE shows
similar spread. For reference, a dotted line signifying ‘LSE noise=steady
state noise’ has been included in the figure. It can be seen that the majority
of points lie below the line; indicating that on average, LF noise decreases
when a device is subjected to LSE.

To investigate more closely the relation between LSE at the gate and LSE
at the source, figure 3.15 was plotted. Along the x-axis the noise change for
LSE at the source has been plotted. This is the LF noise under LSE at the
source divided by the steady state LF noise for the same device. A value
larger than 1 indicates an increase in noise for the LSE case; conversely, a
value smaller than 1 indicates a decrease in noise for the LSE case. Along
the y-axis, the same quantity is plotted for the ‘LSE at gate’ experiment.
For reference, a line y = x is also included in the figure. It is immediately
apparent the noise change for LSE at the source correlates closely with the
noise change for LSE at the gate. There is one data point that is far-removed
from the 45o line. On further investigation, it was found that this device had
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Figure 3.15: Switched Gate compared to Switched Source

a very slow RTS, with time constants of the order of the measurement-time
(approx. 500 s), which influenced the measurement. A longer measurement
on this device would give better results.

Conclusion

Subjecting the device to LSE at its gate and at its source is largely equivalent
in terms of LF device noise.

Duty cycle

When subjecting a device to LSE, it is interesting to examine the effect of
duty cycle on the LF noise. The duty cycle is the fraction of the period that
the device is ‘on’ and generating noise. In terms of LF noise under LSE,
it is important to know whether the device needs to be turned ‘off’ for a
large percentage of the time to influence its LF noise, or whether subjecting
the device to a brief ‘off’ pulse is sufficient to influence the LF noise of
the device. Obviously turning a device ‘off’ for a large percentage of time
reduces its average output noise, but the LF output noise is examined after
correcting for such systematic effects.
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The first report of an LF effect under LSE [70] notes that accumulating the
surface of the device ‘for a few ns’ had significant effect, and removed the
LF transient present in the device. Later, LSE experiments were carried
out [7] where the duty cycle was found to be unimportant for duty cycles
between 25 and 88%.

LF noise measurements were carried out [17] on p-channel devices with 10
and 20 nm tox. W/L was 10/0.3 and 10/1 µm. 16 samples were measured
in total; out of these, 5 showed an LF noise decrease as the duty cycle was
decreased; the other 11 showed the duty cycle to be largely unimportant for
the LF noise change that was observed when subjecting the device to LSE.

Next, measurements were carried out on a number of RTS-dominated de-
vices [24]. These devices were n-channel MOSFETs from a 0.18 µm pro-
cess1. Three devices were selected for their very visible RTS behaviour.
The LF noise of these devices (integrated from 1 to 20 Hz and corrected for
systematic effects) is plotted as a function of the duty cycle in fig. 3.16. In
this figure, one can clearly see that the behaviour of the RTS is strongly de-
pendent on the duty cycle. Depending on the characteristics of the RTS, the
behaviour is very different. RTS 1 has the lowest LF noise, and it decreases
as the duty cycle decreases. RTS 2 has a maximum LF noise at a duty cycle
of around 40..60%, and RTS 3 shows a maximum in LF noise for a duty
cycle of 90%. Time domain measurements confirm that this behaviour is in
correspondence with the ‘effective τ’s’ of the RTS (see section 4.3). These
are selected devices and the results may not be typical of all MOSFETs.

Conclusion

We have shown that whether or not the duty cycle of the switching wave-
form is important depends on the parameters of the RTS in the device in
question. The LF noise power behaves in accordance with the RTS parame-
ters in the ‘on’ and the ‘off’ state, more detail of which is given in chapter 4.
When the RTS parameters are not influenced by LSE, the duty cycle of the
switching waveform is not important; in other cases, turning the MOSFET
‘off’ for a brief period of time can be sufficient to reduce the LF noise of the
device, and turning it off for longer does not produce additional LF noise
benefits [7, 70].

1This is nominally a 0.18 µm process, but the use of phase-shift masks allows minimum
device lengths of 0.13 µm
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Figure 3.16: LF noise as a function of duty cycle of the LSE

Waveform

Several measurements indicate that in order to influence the LF noise, the
LSE the device is subjected to has to cycle the gate-source voltage to well
below threshold, eg. as observed in [65]. In this section, experimental data
will be presented.

Measurements were performed on p-channel devices. A number of devices
with different oxide thickness were measured. The devices were biased in
saturation and LSE was applied at the gate of the device as a 10 kHz, 50%
square wave. The measurement results are given in fig. 3.17 below. Clearly,
cycling the device to well below threshold is beneficial in reducing the LF
noise of the device.

Further research was done on RTS-dominated devices. Measurements in the
time domain [24] indicate that the RTS time constants change significantly
if the device is cycled to a voltage well below threshold. Measurements of
the LF PSD (figure 3.18) of these devices are in agreement with this result.

Conclusion

In order to influence the LF noise of a MOSFET by subjecting it to LSE,
the gate-source voltage needs to be cycled to ‘well below’ threshold.
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The exact bias conditions under which a significant LF noise change is ob-
served depends on the device parameters. In early literature [7, 70] it was
noted that the device needs to be ‘cycled to accumulation’ for any signi-
ficant change in the LF noise of the device to occur. For the n-channel
MOSFETs used, this was done by making the gate-bulk voltage negative [7]
or by pulling the source up to VDD [70]. Later measurements [65] showed
that cycling the device to accumulation was not always necessary: cycling
VGS to 0 V was sufficient. This is supported by later measurements, where
turning the device ‘off’ by pulling VS up to VG was also found to influence
the LF noise of the device.

3.5 Device factors and their influence on LF noise

Introduction

In this section, measurements are presented of LF noise under large sig-
nal excitation on a variety of MOSFETs. It will be shown that p-channel
devices behave in the same way that n-channel devices do. Measurement
results are given that show how LF noise scales with device area and oxide
thickness.

Device type

The difference in LF noise behaviour in steady state and under LSE was
measured for p-channel devices and n-channel devices. Fig. 3.19 shows
the results for a large number of p-channel devices, and fig. 3.20 shows the
same for a number of n-channel devices. We conclude that the p-channel
devices show the same trends in noise behaviour as the n-channel devices.

Device size

To investigate the dependence of LF noise on device size, measurements
were carried out on a set of devices with varying W and L. The devices are
from a 0.18 µm process, and the measurement is carried out at constant ID.
The result is plotted in fig. 3.21; LF noise power is seen to scale inversely
with the area of the device, which is in accordance with the ∆N model for
LF noise (see section 2.5).
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Technological factors

Measurements on a large number of different processes were carried out.
An LF noise change under LSE was observed in almost all cases. Mea-
surements were performed on: HEF 4007 devices (large devices from what
is probably a 10 µm CMOS process), 0.35 µm CMOS processes, 0.25 µm
CMOS processes and 0.18 µm CMOS processes. Additionally, measure-
ments were performed on a special wafer set (nominal 0.18 µm process)
that was processed with varying tox. In this way, the effect of the oxide
thickness can be investigated in isolation.

The results in fig. 3.22 show that the LF noise power at the drain increases
linearly with oxide thickness. The measurement is done at constant ID. This
is in accordance with the ∆N model (section 2.5).

Measurement results of LF noise reduction under LSE are given in fig. 3.23.
The LF noise reduction is seen to increase as tox increases.

3.6 Spread in LF noise under large signal excitation

It was found that the LF noise performance of small MOSFETs (both in
steady state and under LSE) shows great spread. As far as the steady state
LF noise measurements are concerned, this has been reported before in li-
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Figure 3.24: Results of 21 n-channel devices

terature [9]. As far as the LSE noise measurements are concerned, this data
was published for the first time in [66]. If LF noise reduction by LSE is to be
applied in circuit design, statistical behaviour of the effect is of paramount
importance.

The first measurement on a large number of nominally identical devices
is given in fig. 3.24. These are results of 21 n-channel devices from a
0.18 µm process. Noise is measured in a bandwidth of 10 Hz-150 Hz. LSE
is a square wave of 50% duty cycle, 10 kHz, applied at the gate.

In fig. 3.25 results for 41 n-channel devices from a 0.35 µm process are
given. These devices were of varying sizes (W/L from 0.5/0.35 µm to
5/0.35 µm). The LSE is a 50% square wave of 100 Hz, applied at the gate.
The LF noise quantity measured is the variance of the time dependent noise
measured 0.5 µs after turn-on of the device.

In fig 3.26 results for 24 n-channel devices are given. These devices are
from a 0.25 µm process. The LSE is a 10 kHz square wave with a 50% duty
cycle and Voff = −0.6 V. The LF noise is integrated between 10 Hz and
1 kHz for this measurement. Devices were in saturation. This measurement
was repeated on 56 devices from the same process, but with VGS cycled to
0 V rather than -0.6 V. The results are plotted in fig. 3.27. A group of 30
p-channel devices was also measured. The results are plotted in fig. 3.28.
ID is constant for this measurement, and tox varies between 2 and 20 nm.
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Figure 3.25: Results of 41 n-channel devices
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Measurement
from

Average noise power Spread in noise power (σ )

Steady State LSE LSE / S.State Steady State LSE LSE / S.State

fig. 3.24
(0.18 µm n)

2.4×10−10 3.6×10−11 0.15 6.5×10−10 4.3×10−11 0.07

fig. 3.25
(0.35 µm n)

7.3×10−9 5.3×10−9 0.73 7.8×10−9 7.4×10−9 0.95

fig. 3.26
(0.25 µm n)

7.4×10−13 3.8×10−13 0.51 4.5×10−13 2.7×10−13 0.6

fig. 3.27
(0.25 µm n)

7.7×10−13 7.6×10−13 0.99 6.2×10−13 6.2×10−13 1

fig. 3.28
(0.18 µm p)

1.7×10−10 4.6×10−11 0.27 1.6×10−10 3×10−11 0.19

Table 3.3: Measurements of spread

Table 3.3 gives a summary of the measurement results as far as spread is
concerned. It is seen that in almost every case LSE makes the average
LF noise go down, and in some cases this is accompanied by a significant
reduction in the LF noise spread. For the 0.25 µm process (fig. 3.26 and
3.27), the devices need to be turned ‘off’ to -0.6 V before any significant
effect is noticed. The larger devices (0.25 µm n in the table; A = 12 µm2)
show less spread than the smaller devices. The spread in LF noise mandates
correct use of statistics when designing close to the LF noise limit. Care
should be taken since the distribution of the LF noise is not well known; σ
is not much smaller than the average, so it is clearly not Gaussian.

3.7 Conclusion

In this chapter, measurements of LF noise under LSE have been presented.
The majority of devices measured showed RTS-dominated LF noise. In
all measurements, subjecting the devices to LSE decreased the average LF
noise of the devices.

As far as bias factors are concerned, turning the device ‘off’ by varying VS

changes the LF noise in the same way as by varying VG. However, in all
cases, VGS needs to be cycled well below VT before any significant effect on
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the LF noise is observed. The voltage below which this happens depends
on the parameters of the process in question.

A reduction in LF noise when the device is subjected to LSE is observed
in all processes that were measured, ranging from very old processes (HEF
4007) to new (0.18 µm) processes, from experimental to mature industrial
processes. In all cases, subjecting the MOSFET to LSE was seen to in-
fluence its LF noise. This was observed for both n-channel and p-channel
devices. Measurements on similar devices with varying oxide thicknesses
(a special wafer set with varying tox but with otherwise identical devices
was used) were performed; no significant deviation from existing LF noise
models (∆N) was observed.

Also, for the first time, measurements of spread of LF noise under LSE
are presented. LF noise of the devices is not normally distributed, so care
should be taken when using such devices in noise-limited applications, as
the distribution of the noise is not, in general, known. While it is as yet im-
possible to predict the LF noise behaviour of a single device when subjected
to LSE, the average LF noise of a group of devices as well as the spread of
the LF noise will go down when the devices are subjected to LSE.
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Chapter 4

Modelling

4.1 Introduction

The low frequency noise observed in n-channel MOSFETs, especially in
small-area devices is caused predominantly by Random Telegraph Signals
(RTS). RTS noise (see section 2.3) is always observed in small devices with
a low number of free carriers as shown in section 2.5. It may also be obser-
ved in larger devices.

An RTS in a MOSFET is caused by a so-called ‘trap’ which is a localized
energy state. Trapping behaviour in a MOSFET is governed by Fermi-Dirac
statistics, as described in the classical Shockley-Read-Hall (SRH) model for
trapping and detrapping [60]. The SRH model is commonly applied under
steady state conditions to derive the effective occupancy of a trap. As is well
noted in the original paper by Shockley and Read and in [54], it is equally
valid under transient conditions, which is the case treated here.

In this chapter, a model is presented that explains how the RTS noise chan-
ges in a MOSFET subjected to large signal excitation (LSE). It is based
on the Shockley-Read-Hall model for capture and emission of electrons by
traps. Earlier models to predict the behaviour of RTS noise under LSE
[19, 62] cannot account for the experimental observations that in some ca-
ses, the LF noise of the device increases when subjected to LSE, and that
not all of the LF noise of the device disappears when the device is subjected
to LSE.

This chapter is organized as follows: First, the SRH model for capture and
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emission will be briefly reviewed. Next, the predictions made by SRH mo-
del under transient conditions will be treated analytically. This leads to
closed-form expressions for some limiting cases, which explain why an LF
noise decrease is often observed when a MOSFET is subjected to LSE.
Next, a simulator is presented [68] for more complex cases where the ana-
lytical approach is unpractical. The simulator is seen to produce results
in excellent accordance with measurement results. Finally, the model is
discussed. In this chapter we focus on the macroscopic properties of the
model; a more detailed description of the physics involved is given in [40]
and [38]. Though the model works well in an experimental setting, the main
shortcoming is that it cannot predict in advance what the parameters of the
traps in MOSFETs are.

4.2 Model

Shockley-Read-Hall statistics

A trap is a localized energy state in the bandgap that has an energy level
between the conduction band energy level (Ec) and the valence band energy
level (Ev). Traps occur at the Si-SiO2 interface or in the oxide and are
attributed to dangling bonds or impurities. Traps that are close in energy
to the conductance band edge interact with the conductance band, and traps
that are close to the valence band edge will interact with the valence band.
In the following section, the behaviour of traps near the conductance band
edge is discussed; these are the traps that dominate the LF noise behaviour
of n-channel MOSFETs. For p-channel devices, an analogous derivation
can be made for traps near the valence band edge.

A trap (fig. 4.1) near the conductance band edge can interact with the con-
ductance band by capturing or by releasing an electron. Capture or emission
of an electron from the conduction band causes RTS noise (observed in the
drain current of the device) in two ways: First of all, the electron that is cap-
tured from the channel does not take further part in the conduction process
in the device; this is known as the ∆N effect. Secondly, capture of an elec-
tron in a trap changes the charge of the trap. Capture of an electron in a trap
will make the trap more negatively charged, regardless of its initial charge
state. This has the effect of modulating the position of the channel; and is
known as ‘Coulomb scattering’ or as a ∆µ effect caused by and correlated
to the capture of an electron (∆N). This second effect [57] often causes a
much larger drain current fluctuation than can be explained on the basis of
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Figure 4.1: In n-channel MOSFETs, traps near the conduction band edge
cause RTS noise

the simple ∆N effect.

The parameters of the RTS noise are: (1): Its amplitude, (2): The mean time
before capture of an electron (τc), and (3): The mean time before emission
of an electron (τe). This is discussed in detail in section 2.3.

On the basis of Fermi-Dirac statistics, it can be shown that:

τc =[σ(E,x)vthn]−1

τe =
[
σ(E,x)vthNce

−(E)/kT
]−1

(4.1)

σ(E,x) Is the capture cross section of the trap, which is dependent on the
energy level of the trap below the conduction band edge (E = Ec −ET) and
its depth in the oxide away from the channel (x). vth Is the thermal velocity
of the electrons, n is the electron density in the conduction band, and Nc is
the effective density of states in the conduction band.

The rates of capture and emission are given by:

rc(E, t) =
1− f (E, t)

τc
[s−1]

re(E, t) =
f (E, t)

τe
[s−1] (4.2)

In these equations, f (E, t) is the occupancy of a trap: it is the probability of
finding a trap with energy level E filled at time t. The net rate of capture is
given by:

d f (E, t)
dt

= rc(E, t)− re(E, t) (4.3)
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This equation is central in the study of traps, since it is valid in the steady
state as well as during a transient. It is a first order differential equation in
f (E, t) and can be solved [54] to give:

f (E, t) =
τe

τe + τc
+Ke−( 1

τe
+ 1

τc
)t (4.4)

K is an integration constant that will depend on the initial condition. In
equilibrium (t → ∞), equation 4.4 reduces to the well known form:

f (E) =
τe

τc + τe
(4.5)

Bias dependence of τe and τc

According to basic SRH-theory (eq. 4.1), τc is bias dependent via the bias
dependency of n. τe should not be dependent on bias, only on the energy le-
vel E of the trap. If the trap is situated some distance in the oxide, however,
E may depend on VGS. As a result of this, τe may also be bias dependent.

This is consistent with measurements of RTS time constants done under
steady state conditions. Measurements of the bias dependency of RTS time
constants in n-channel MOSFETs are given in [24, 33, 41, 47, 59] and [38].
In all cases, it is found that as VGS is decreased τc increases and τe decreases,
(the probability of a trap being full decreases and the probability of a trap
being empty increases). The change in τ is commonly up to two orders of
magnitude, though even more is observed in selected devices [24].

τc increases with decreasing VGS

τe decreases with decreasing VGS (4.6)

RTS noise under LSE is modelled by making the following assumptions:

• The LF noise of the MOSFET is dominated by a single RTS with a
particular energy level E and location in the oxide x.

• The behaviour of the RTS is governed by Shockley-Read-Hall statis-
tics. This is true in steady state and also under transient conditions.

• τe And τc exhibit bias dependence in accordance with 4.6.
• τe And τc are instantaneous functions of the bias of the device.

4.3 Analytical

The occupancy of a trap with a given energy level as a function of time, f (t),
is derived for the simple case where the bias voltage alternates abruptly and
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Figure 4.2: Occupancy of trap

periodically between two states. This is analytically the simplest case. For
insight, the hypothetical case where the RTS amplitude does not depend
on the bias state of the device is treated, and only the RTS time constants
are time-variant. Under the condition that the excitation frequency is high
compared to the RTS corner frequency, it is seen that a cyclostationary RTS
can be modelled by an equivalent stationary RTS; the time constants of this
equivalent stationary RTS will be derived. The fact that in the measurement,
the RTS is invisible during a fraction of the period can be considered in
isolation and will be accounted for separately.

In deriving the occupancy f (t), reference is made to fig. 4.2.

dc Is the duty cycle of the cyclostationary RTS, which varies between 0 and
1 and expresses the fraction of the period in which the device is in the ‘on’
state. During the first part of the period, from t = 0 . . .Tdc, the device is
‘on’ During this time, RTS behaviour is governed by τe,on and τc,on. During
the second part of the period, from t = Tdc . . .T , the device is ‘off’, and
RTS behaviour is governed by τe,off and τc,off. The occupancy is given by
eq. 4.4 at all times, with the addition that in eq. 4.4 there were only two
time constants, τe and τc, and now there are four: τe,on,τe,off,τc,on and τc,off.

Making the substitutions

τeff,on =
[

1
τe,on

+
1

τc,on

]−1

τeff,off =
[

1
τe,off

+
1

τc,off

]−1

(4.7)
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we may write, for the first half of the period,

f (t) =
τe,on

τe,on + τc,on
−

[
τe,on

τe,on + τc,on
− finitial,on

]
e−t/τeff,on

for t = 0..Tdc

(4.8)

In the same way, during the second half of the period,

f (t) =
τe,off

τe,off + τc,off
−

[
τe,off

τe,off + τc,off
− finitial,off

]
e−(t−Tdc)/τeff,off

for t = Tdc..T

(4.9)

Since the occupancy of the trap is continuous in time, and the behaviour is
cyclostationary, f (Tdc) as given by the first equation must equal fintital,off,
and f (T ) as given by the second equation must equal finitial,on. In this way,
we can solve for finitial,on and finitial,off:

finitial,on = f (T )

=

τe,off
τe,off+τc,off

(
1− e

−T (1−dc)
τeff,off

)
+ τe,on

τe,on+τc,on
e
−T (1−dc)

τeff,off

(
1− e

−Tdc
τeff,on

)

1− e
−Tdc
τeff,on e

−T (1−dc)
τeff,off

(4.10)

finitial,off can be found in a similar way.

It is useful to examine what happens if the switching frequency is made
very high compared to the RTS corner frequency. To this end, the limit is
taken for T → 0. In this limit, the frequency can be considered so high that
any analysis interval dt will contain an integer number of periods of the
switching signal, and since the signal is cyclostationary, it becomes statio-
nary in the limit for T → 0. If it is stationary, the probability of a transition
per unit time is constant, i.e. it is an RTS. This equivalent stationary RTS
will be described in terms of the parameters of the cyclostationary RTS.
The amplitude of the RTS is the same as that of the original RTS. We will
call the equivalent capture and emission time constants for this equivalent
stationary RTS τc,eff and τe,eff. They are derived below:

The ‘effective occupancy’ of the equivalent stationary RTS is found by exa-
mining finitial,on and finitial,off, which, in the limit for T → 0 converge to the
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same value:

feffective =
1/

[
dc

τe,on
+ 1−dc

τe,off

]
1/

[
dc

τe,on
+ 1−dc

τe,off

]
+1/

[
dc

τc,on
+ 1−dc

τc,off

] (4.11)

Since this describes the effective occupancy of the equivalent stationary
RTS, it can be seen from eq. 4.5 that this is equal to:

feffective =
τe,eff

τe,eff + τc,eff
(4.12)

It follows that:

τe,eff = 1/

[
dc

τe,on
+

1−dc
τe,off

]
× τc,eff

1/
[

dc
τc,on

+ 1−dc
τc,off

] (4.13)

In the limit for dc → 1, τe,eff must obviously equal τe,on, which is only
satisfied in eq. 4.13 if

1
τc,eff

=
dc

τc,on
+

1−dc
τc,off

(4.14)

τe,eff is therefore given by

1
τe,eff

=
dc

τe,on
+

1−dc
τe,off

(4.15)

Conclusion

A cyclostationary RTS with a constant amplitude and two states, an ‘on’
state from t = 0 . . .Tdc, in which behaviour is governed by τe,on and τc,on,
and an ‘off’ state from t = Tdc . . .T in which behaviour is governed by
τe,off and τc,off, can, in the limit for T → 0 be described by an equivalent
stationary RTS with parameters τe,eff and τc,eff. The parameters τe,eff and
τc,eff are given by equations 4.14 and 4.15.

Modulating a cyclostationary RTS

In actual measurements, the cyclostationary RTS is not visible when the
device is ‘off’. This can be modelled mathematically by a modulation with
a square wave of period T and width Tdc.
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In the limit for T → 0, the occupancy of the RTS is constant, and the cy-
clostationary RTS is described by an equivalent stationary RTS. This equi-
valent stationary RTS is modulated by a square wave with a period T and a
duty cycle dc, so it will have an LF PSD corresponding to that of the equi-
valent stationary RTS, but a factor 1/dc2 lower due to the modulation of the
RTS by the square wave.

Since the equivalent RTS is stationary, it has no phase relation with the
excitation signal, and therefore it does not matter what the phase of the
modulating signal is. In other words, it does not matter in which part of the
period the RTS is visible. This can be understood because the number of
RTS transitions in one period of the excitation waveform is 0 in the limit
for T → 0.

Noise power of an RTS

The PSD of an RTS is given by eq. 2.27. τ0 Is replaced by τc, τ1 by τe and
the amplitude of 1 is replaced by an amplitude ∆I to come to:

β =
τc

τe
(4.16)

ω0RTS =
1
τe

+
1
τc

[rad/s] (4.17)

SRTS(ω) = 2(∆I)2 β
(1+β )2

1
ω0RTS

1

1+ ω2

ω2
0RTS

[A2Hz−1] (4.18)

This will also hold for the stationary ‘effective RTS’ that results from the
limit for T → 0 of a cyclostationary RTS that is periodically and abruptly
switched between two states. The PSD behaviour for that case can now be
investigated. For simplicity, we will consider the case for dc = 0.5.

In fig. 4.3, the RTS parameters βon and ω0,on are plotted as a function of
τe,on and τc,on. The logarithm of τe,on and τc,on are plotted along the x and y
axes respectively, and contour lines for each factor 10 difference in βon and
ω0,on are plotted. In this way, we can easily visualize the RTS parameters
of any RTS given τe,on and τc,on. Since τ’s have an exponential dependence
on the energy E of the trap and the distance x in the oxide, a plot in the logτ
domain makes sense. A log axis for τ is also convenient for a multiplicative
change in τ since it becomes a shift along a logτ axis. Making use of eq.
4.1, it is noted that a decade change in τe at constant τc corresponds to a
change in trap energy of approximately 60 meV.
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Figure 4.3: Parameters of RTS as a function of τe,on and τc,on

To illustrate which RTS are the dominant contributors to the LF noise at
the output, the PSD of the RTS at a particular frequency (in this case at
ω = 1 rad/s) can be plotted as a function of τe,on and τc,on. This is done in
fig. 4.4. The contour lines in the plot denote the τ’s of traps with a relative
noise power of 80, 60, 40 and 20% compared to the dominant RTS which
is at the heart of the contours.

It is immediately obvious that the RTS’es with βon and ω0,on close to 1 give
the dominant noise contribution to the PSD at ω = 1 rad/s. The traps with
large βon are mostly empty and do not contribute significantly to the noise.
The traps with small βon are mostly full and do not contribute significantly
either. If the RTS corner frequency is too low or too high, the contribution
of the RTS is insignificant as well. In fact, fig. 4.4 is nothing but a graphical
representation of eq. 4.18.

We are now in a position to examine the LSE RTS behaviour. To this end, a
simple but effective and insightful model for the bias dependency of τe and
τc is used:

τe,off =τe,on/me

τc,off =τc,on ×mc (4.19)

It might be physically more realistic to model τc,off as ∞, since capture of an
electron in a trap is very unlikely when the device is ‘off’, but for the results
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Figure 4.4: Contribution to PSD at ω = 1 rad/s for different RTS’es, steady
state

of the model, the difference is not important as the significant effect of
subjecting the device to LSE lies in the change in τe, not τc. From equation
4.19, 4.15 and 4.14, it follows that:

τe,eff =
2

me +1
τe,on

τc,eff =
2mc

mc +1
τc,on (4.20)

This immediately explains why a change in τc is not as important as a chan-
ge in τe: even in the limit for mc → ∞, τc,eff only changes by a factor of 2
compared to τc,on. τe,eff, on the other hand, can change by several orders of
magnitude compared to τe,on.

The parameters (β , ω0 and the PSD at 1 rad/s) of the effective RTS for the
LSE case can now be plotted. Since the relation between the on-state τ’s
and the effective τ’s (given in eq. 4.20) is known, the plot of the effective
RTS parameters can be made as a function of τe,on and τc,on. This is done in
fig. 4.5 for me = mc = 10.

This figure shows that the main contribution to the PSD is now from diffe-
rent RTS’es. Traps that were mostly full in the steady state case now have
an occupancy of 50% and a β of 1, and they dominate the output noise con-
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Figure 4.5: Contribution to PSD at PSD at ω = 1 rad/s for different RTS’es,
LSE

tribution. In fact, the whole figure has simply been shifted down by a factor
2mc/(mc +1) and has been shifted to the right by a factor (me +1)/2.

The question of whether subjecting a device to LSE leads to a decrease in
the LF noise PSD as observed in measurements can now be addressed. To
this end, the distribution of τ’s is examined. This can be the distribution of
τ’s in a ‘large’ device with very ‘many’ traps, but it can also be the distri-
bution of τ’s over an ensemble of small devices, each with only a limited
number of traps. In the latter case, an individual device will show behavi-
our depending on the traps it happens to contain, but the ensemble average
of the noise performance will be the same as for a single large device with
many traps, under the assumption that individual traps make uncorrelated
contributions to the output noise power.

Since the shape of the noise contribution curve in fig. 4.4 and 4.5 is the
same, and it has only been shifted in the log t domain, it may be concluded
that the noise PSD will not change if the distribution of τ’s is uniform in
log t (exponential in t).

A uniform distribution in log t results if two conditions are satisfied. First
of all, the distribution of trap depth in the oxide, x, should be uniform. This
is the basis of McWhorter’s model [51] and responsible for the emergence
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of a 1/ f spectrum1. If, additionally, the trap energy level E is uniformly
distributed, a uniform distribution of traps in logτe and logτc results.

Since in measurements it is observed that subjecting the device to LSE re-
duces its LF noise, we conclude that the distribution of time constants is not
uniform in the log t domain.

One explanation for the non-uniformity of the distribution of traps in the
log t domain is that the trap density near the center of the bandgap is lower.
This is often reported in literature, eg. [72]. Comparing τe,eff to τe,on, a
decrease is noted, and comparing τc,eff to τc,on, an increase is observed (eq.
4.20). This means that the traps nearer the center of the bandgap are the
ones contributing LF noise under LSE, and if there are fewer traps, this
explains why LSE is observed to lower the LF noise. Like this, LF noise
measurements under LSE can be used as a trap density characterization tool.

4.4 Cyclostationary RTS noise Simulator

For those cases where the analytical approach does not suffice, a numerical
simulator to simulate cyclostationary RTS noise was made. It can be used
to simulate cases that are too complex to for the analytical approach and
it can also be used to validate the limiting case described by the analytical
model.

Principle

The generation of RTS noise in a MOSFET that is operated under cyclosta-
tionary bias conditions is simulated. The basic assumption is again that τe

and τc vary instantaneously with VGS. The simulator can easily be used for
a variety of non-trivial situations that are not easily tackled analytically. For
example, it is not only able to simulate discrete, two-state cyclostationary
RTS’es, but can handle any time-dependent RTS, and it can cope with any
bias dependency of τe and τc. Also, it can be used for transient simulati-
on, where the observation interval immediately follows a single bias tran-
sient. In this section, a comparatively simple case will be treated in-depth
to show that the simulation results are in direct agreement with measure-
ment results: we will examine measurements carried out on 0.2/0.18 µm

1The mechanism by which the electrons from the channel interact with traps is assumed
to be direct tunnelling, making the capture cross section a negative exponential function of x.
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Figure 4.6: Cyclostationary RTS has periodically varying τc and τe that
directly depend on VGS. This is the case in MOSFETs where the gate bias
is periodically cycled between two values VGS1 and VGS2.

n-channel MOSFETs [66] that are dominated by RTS noise. In these me-
asurements, the gate bias VGS is periodically switched between two states
(an ‘on’ state φ1 and an ‘off’ state φ2) with a 50% duty cycle. Both the
drain-source voltage VDS and the bulk-source voltage VBS are kept constant.
The two bias states that are periodically alternated between correspond to
two different gate voltages and hence, different τc and τe for the RTS noise
generating traps in the device. This is shown in fig. 4.6; VGS1 corresponds
to the ‘on’ state of the device, and VGS2 corresponds to the ‘off’ state of the
device. The steady state RTS time constants are τc,on and τe,on and the ‘off’
state time constants are modelled as τc,off = τc,on ×mc and τe,off = τe,on/me

where mc and me are parameters that are to be determined. When mc and
me are unequal to 1, the parameters of the RTS vary periodically, and the
RTS is therefore cyclostationary.

Obviously, when cycling the gate bias, the drain current ID of the device
also changes, and with it, the visibility of the trap at the terminals of the
device: When the device is ‘on’, the effect of the trap is visible as a fluctu-
ation in ID and when the device is ‘off’, ID is negligible and the behaviour
of the trap is not visible in the drain current. This is shown in fig. 4.7a: The
cyclostationary RTS is modulated by a square wave. The drain current of
the device, ID, (fig. 4.7a), can be considered as a superposition of two sig-
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nals: a large square wave with an amplitude of IL (deterministic; fig. 4.7b),
and a small modulated cyclostationary RTS with an amplitude IH− IL. (sto-
chastic; fig. 4.7c). The crucial point is that the RTS continues to ‘exist’
even at times when it cannot be directly observed! The deterministic cur-
rent component of fig. 4.7b contributes a series of δ -functions in the output
power spectrum. (At 0 Hz, ± fswitch, ±3 fswitch, ±5 fswitch, etc...) In mea-
surements, this current component is suppressed as much as possible, and
it is therefore not simulated. The stochastic current component of fig. 4.7c,
however, is interesting: it is the modulated, cyclostationary RTS noise that
is responsible for the LF noise that is observed. In the frequency domain,
it contributes a series of aliases around harmonics (again: around 0 Hz,
± fswitch, ±3 fswitch, ±5 fswitch, etc...) of the modulating frequency. In me-
asurements, the baseband alias of this signal is measured using a spectrum
analyser.

The simulator produces the signal of fig. 4.7c. This is done by first ge-
nerating a cyclostationary RTS. This models the internal stochastic process;
using a single factor m = mc = me to model the change in τc and τe produces
excellent agreement with measurement results. The cyclostationary RTS is
then modulated by a square wave. This models the effect of switching on
the visibility of the RTS. The modulated DC drain current (fig. 4.7b) is not
simulated as it is uninteresting.

This method of simulation is more subtle than the method suggested by Tian
and El Gamal [62]. Their calculation is based on the assumption that when
the MOSFET is turned ‘off’, τc → ∞ and τe → 0; or in terms of our model:
m → ∞. They correctly note that their method underestimates the noise
coming from the device in actual measurements. In contrast, our model can
account for the very variable noise reduction that is observed in different
small-area devices, and it can explain that the LF noise of some devices
increases when they are subjected to large signal excitation.

Implementation

The simulator is implemented in MATLAB. In general, the transition pro-
babilities per unit time are defined as [48]:

Pcapture(VGS(t)) =
dt

τc(VGS(t))

Pemission(VGS(t)) =
dt

τe(VGS(t))
(4.21)
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Figure 4.7: Cyclostationary, modulated RTS. (a) Shows the total drain cur-
rent of the device that is cycled between VGS1 and VGS2. (b) And (c) isolate
the deterministic and stochastic components of this current, respectively.
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Since the simulator is time-discrete, (with a constant sample time tsample),
tsample needs to be substituted in place of dt:

Pcapture(VGS(t)) =
tsample

τc(VGS(t))
[sample−1]

Pemission(VGS(t)) =
tsample

τe(VGS(t))
[sample−1] (4.22)

Due care is taken that the time-discrete nature of the simulation does not
introduce significant errors: Pcapture and Pemission � 1 [sample−1]. For each
simulation run a large number of transitions is generated to produce statisti-
cally significant results. For consistency with the measurements, the lower
frequency is chosen to be 10 Hz, and the switching frequency is 10 kHz.
The sample rate of the simulation is an order of magnitude larger than the
highest frequency of interest. To produce a smoother plot, the simulation is
carried out a number of times with different seeds for the random generator
and the results are averaged.

Validation

The effect of various parameters on the spectrum of the cyclostationary RTS
can now be explored. Some simulation results are plotted in fig. 4.8: ‘A’
is the PSD of a stationary RTS for β = 1. ‘B’ shows the effect of only
modulating this RTS (m = mc = me = 1). As predicted by basic modulation
theory [61], the PSD below the switching frequency has decreased by a
factor 4 (6 dB). Apart from the clearly visible LF spectrum, an alias of this
spectrum is visible around the switching frequency and its odd multiples, as
expected. The modulated RTS is now made cyclostationary: mc and me �= 1.
Curve ‘C’ shows the PSD of the cyclostationary RTS with mc = me = 10.
Curve ‘D’ shows the PSD for mc = me = 50 and curve ‘E’ shows the PSD
when mc and me → ∞. This is the limiting case, where in the ‘off’ state
τc → 0 and τe → ∞. Curve ‘E’ has the lowest LF PSD. It corresponds to the
method of [19] and [62]. For comparison, the solid lines in the figure are
the results from the analytical expression which are seen to be in excellent
agreement with the simulator output. Direct comparison is possible because
this is a simple case. The analytical expression for curve ‘E’ is not plotted
in the figure, as the requirement that the switching frequency be ‘very high’
is not adequately satisfied for this case.

Our model and our simulator are able to explain the variable noise reduction
that is seen in measurements. They can also account for increased LF noise
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Figure 4.8: Simulation highlights the difference between simply modula-
ting an RTS and making it cyclostationary. Modulating the RTS gives a
6 dB decrease in LF noise PSD; making it cyclostationary gives a far larger
(and variable) decrease.

in a MOSFET under large signal excitation. To illustrate this, a simulation
is performed with an asymmetric RTS; β = 0.02. The results are shown in
fig. 4.9. The stationary RTS looks much like any other stationary RTS, and
the modulated RTS (mc = me = 1) brings no surprises either. The interesting
curve here is the one where mc = me = 10, for which the LF PSD is seen to
rise above the PSD of the stationary RTS. For much larger values of mc and
me, the LF PSD drops once more.

In the next section, we will show that the simulator can reproduce the mea-
surement results by fitting β , mc and me to the measurement results. Before
that, however, the measurement results will be examined in more detail.

Comparison between simulator and measurement results

Our cyclostationary RTS generation model can reproduce a number of mea-
surement results. First of all, a measurement with a varying β is carried out
by varying the VGS of a single device, and secondly a number of randomly
selected devices from the same wafer, exhibiting widely varying noise per-
formance, are measured. Noise measurements are carried out on minimal-
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Figure 4.9: Generation of cyclostationary RTS starting with asymmetric
RTS. An asymmetric RTS can give an LF noise increase when the RTS is
made cyclostationary.

size n-channel MOSFETs from a 0.18 µm process. Device size (W/L) was
0.2/0.18 µm.

• Steady state noise measurements are performed by applying a con-
stant bias voltage to the gate.

• Large signal noise measurements are carried out by subjecting the
device to a 50% duty cycle square wave; i.e. 50% of the time ‘on’,
(VGS same as in the steady state case),and 50% of the time ‘off’
(VGS = 0 V). The switching frequency is 10 kHz.

For details of the measurement, the reader is referred to chapter 3 or refe-
rences [65] and [66].

Measurement with variable VGS

First of all, a measurement was carried out on a single device that was selec-
ted for having a very visible RTS. VGS Of this device was stepped through
three different values:

• One where the trap was observed to be approximately half-filled (τc ≈
τe, figure 4.10 b),

• one where it was observed to be mostly full (β ≈ 0.3, figure 4.10 a),
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• and one where it was observed to be mostly empty (β ≈ 10, figure
4.10 c).

For each VGS, a steady state bias and a large signal measurement was carried
out. For all measurements, the RTS amplitude at the drain was observed to
remain constant in the steady state case as well as in the large signal case.
Hence, the difference in the amplitude of the measured spectra is attributed
to differences in the time domain behaviour of the RTS.

The simulator can correctly model this measurement. First of all, the steady
state simulations are fitted to the steady state measurement results. Corres-
pondence between simulation and measurement is achieved when, in the
simulator, f0RTS is set to 1.5 kHz and β is chosen as 0.3, 1 and 10 for mea-
surements (a), (b) and (c) respectively. The simulated steady state results are
shown as ‘◦’ in the figure. To fit the model to the LSE results, mc = me = 12
was chosen. The simulated LSE results are shown as ‘	’ in the figure. As
can be seen, the steady state spectra are not as sensitive to variation in β as
the LSE spectra. Thus, after fitting the steady state results with varying β ’s,
a single assumption (m = 12) is adequate to coarsely model all three LSE
results. The only difference between the simulation results for fig. 4.10 a,
b, and c is in the β of the RTS that is being modelled. In the measurements,
the spectrum is observed to rise again at low frequencies. This is due to
additional slow traps that are not modelled in the simulator.

Measurement of 21 different devices

Next, 21 nominally identical devices, selected randomly from the whole
wafer were measured. These devices were found to exhibit widely varying
RTS noise, in terms of amplitude, f0RTS and β .

The measurement results are plotted in fig. 4.11, which shows steady sta-
te noise along the x-axis versus the LSE noise reduction along the y-axis.
The steady state noise (x-axis) is expressed as average gate-referred noise
[V Hz−1/2] in a measurement band from 10 to 150 Hz. The net LSE noise
reduction (y-axis) is measured by subjecting the device to large signal con-
ditions. In this state, the average LF noise power is again measured from 10
to 150 Hz. The difference between the steady state noise measurement and
the LSE noise measurement, corrected for the modulation effect (6 dB), is
the noise reduction2 that is plotted along the y-axis.

2this is comparable to the LF difference between curve ‘B’ and curve ‘C’, ‘D’ or ‘E’ in
fig. 4.8.
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Figure 4.10: Different types of RTS noise in a single MOSFET can also be
explained very well using the cyclostationary RTS noise model.
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Figure 4.11: Net LSE noise reduction vs. steady state noise power for
randomly selected devices: Noise reduction varies and in some cases noise
increases.

In fig. 4.11, three different classes of devices, ‘a’, ‘b’ and ‘c’ can be identi-
fied. The LF noise properties of these different devices are summarized in
table 4.1. In figures 4.12-4.14, the noise spectrum of one device from each
category is examined, and in each case, a stationary RTS noise simulation
and a corresponding cyclostationary RTS noise simulation is shown to co-
me into close qualitative agreement with the measured data for the steady
state noise measurement and the large signal noise measurement respecti-
vely. The parameters of the RTS noise simulation for each case are given in
table 4.1.

In each of the figures 4.12-4.14, a calculated line for the bulk silicon 1/ f
noise is shown, with αH chosen as 10−6. This is a realistic value for bulk
Si [11], and represents the level of bulk 1/ f noise expected in the me-
asurement. It can be seen that the RTS noise level is much higher than
the bulk 1/ f noise. In each figure, the output-referred noise PSD is plot-
ted. This can be referred to the gate by dividing by the g2

m of the device
(gm = 130 µA/V). In fig. 4.13 and 4.14, the measured LSE spectrum ex-
hibits a rise at low frequencies. As in fig. 4.10, this is probably due to
additional slow traps in the device or bulk 1/ f noise and is not modelled.
In fig. 4.14, both the LSE measurement result and the simulation show a
rise in the PSD close to the switching frequency. This is the first alias of the
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Device Category ‘a’ ‘b’ ‘c’

LF noise under LSE Decrease > 3 dB No change Increase > 3 dB

Location in fig. 4.11 Upper right Middle Lower left

RTS simulation:
fo [Hz]

150 5 k 1.5 k

RTS simulation: β 1 0.3 0.02

RTS simulation:
mc (= me)

50 10 50

Measurement and
simulation shown in
fig.

4.12 4.13 4.14

Table 4.1: Devices of figure 4.11 can be grouped into three categories

noise spectrum around the switching frequency, which is clearly visible in
fig. 4.8 as well.

Simulating transient noise

The simulator can also be used to simulate noise under transient bias con-
ditions. By this the noise briefly after turn-on of a device is meant. For
example, in a sampled system, a device may be off for a relatively long
time, and then be turned on and immediately used to take a sample of the
input signal. If the time between turn-on and the sample moment is short
relative to the time constants of the device noise, then a steady state ap-
proach to noise is obviously not appropriate. The cyclostationary limit for
high frequencies treated analytically in section 4.3 is also not applicable in
a case like this. The simulator, however, can aid in describing such noise
behaviour.

As an example, consider the noise measurement in fig. 4.15 (a) and (b).
This measurement was carried out on a 0.5/0.35 µm n-channel MOSFET
from a 0.35 µm process.

Fig. 4.15 (a) shows the steady state noise measurement. Time is plotted
along the x-axis, and the trial# is plotted along the y-axis. The device noise
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Figure 4.12: Measurement and simulation result showing strong decrease
in LF noise under LSE
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Figure 4.13: Measurement and simulation result showing no change in LF
noise PSD when the device is subjected to LSE
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Figure 4.14: Measurement and simulation result showing an increase in LF
noise when the device is subjected to LSE

is dominated by an RTS; the figure is colour coded so that one state of the
RTS is white and the other state of the RTS is black. The RTS in question
is clearly strongly asymmetric.

Fig. 4.15 (b) shows the noise of the same device, but now immediately after
turn-on of the device: immediately preceding the measurement interval of
4 µs the device was ‘off’ for 5 ms. It is clear that the trap starts in the
‘black’ state immediately after turn-on, and after some time relaxes into
the ‘white’ state, after which steady state behaviour is observed. Since the
‘black’ state is the one the trap is found in immediately after turn-on, it may
be associated with an empty trap, and the ‘white’ state with a full trap.

The simulator is able to reproduce this steady state and transient behaviour
by suitable selection of τc,on (6× 10−7 s) and τe,on (4× 10−5 s). τe,off is
made very small to ensure that the trap is mostly empty at the instant of
turn-on, just as in the measurement. The simulation results are plotted in
fig. 4.15 (c) and (d).

It is clear that the simulation results are very similar to the measurement
results, but further validation is desired. To this end, the average of the noise
voltage over all trials is plotted as a function of time, as is the variance of the
noise voltage over all trials as a function of time. This is done in fig. 4.16.
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Figure 4.15: Comparison between measurement (a and b) and simulation
(c and d) of an RTS under steady state (a and c) and transient (b and d)
conditions.

Once again, it is clear that the simulation results are in close agreement with
the measurement results.

In fig. 4.16 (a), it is seen that for a steady state RTS, the average noise vol-
tage is constant. The steady state variance (c) of the noise is also constant,
though the strongly asymmetric nature of this particular RTS means that the
variance is low, and the curve looks noisy. In fig. 4.16 (b), the average noise
voltage immediately following turn-on of the device is shown, and in (d),
the variance of the noise immediately following the bias transient is shown.
The variance exhibits a very characteristic ‘hump’; at t = 0 the variance is
low because the trap is mostly empty, at t = 4 µs the variance is low because
the trap is mostly full, and in between, around t = 0.5 µs after turn-on, the
variance is at a maximum due to the large number of transitions occurring
at that time.
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Figure 4.16: Comparison between measurement and simulation of average
noise voltage and variance of noise voltage in steady state and after biasing
transient

Summary

When a large signal bias voltage is applied to a transistor in which noise
behaviour is dominated by the effect of a single trap, several different types
of behaviour are seen.

In one experiment, different β ’s are generated in a single MOSFET by va-
rying VGS. The variation in β has an influence on the steady state noise
spectrum, and a strong effect on the LSE noise spectrum. In the simula-
tion, the same β as observed in the experiments is used, after which only
the appropriate m needs to be chosen to fit the model to the experimental
results.

In another experiment, different β ’s are found in different nominally iden-
tical devices on the same wafer. In the same way as in the first experiment,
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cyclostationary RTS noise simulation is able to model the measurement re-
sults. Depending on the parameter β of the trap in question, the LF noise
of the device is seen to go down, go up or not change significantly. The two
extreme possibilities are:

• If β is close to 1 in the steady state, (upper righthand corner of fig.
4.11) then subjecting the device to LSE will strongly reduce the noise
coming from the device.

• If β is much smaller than 1 in the steady state, (lower left-hand corner
of fig. 4.11) large signal excitation can cause an increase in the noise
coming from the device. Such a device contains a trap that is mostly
filled in the steady state, and applying LSE to the device will cause it
to be periodically emptied, thereby increasing its contribution to the
LF noise PSD. The traps with β deviating far from 1 are those with a
rather low steady state LF noise PSD. The simulation corresponds to
the measurements in this respect.

The strength of the simulation presented here is that a wide range of ob-
servations can be explained using a single, physically realistic assumption,
namely that the τc and τe of a trap in a MOSFET are bias dependent. In mo-
delling the experimental results, in each case it was assumed that mc = me.

For demonstration of the model, the reasonable assumption was made that
mc = me which works well but for which there is no strong physical basis.
The power of the model, however, is that it can handle any bias dependency
of τe and τc. For example, in [40] and [38], a more detailed characterization
of τe and τc as a function of VGS is given. Such characterization effort can
easily be incorporated.

In summary:

• The model explains why the LF noise of a device can go up, remain
the same or decrease.

• If the additional assumption of a lower density of traps in the center
of the bandgap is made, the model explains why the LF noise of large
devices containing ‘many’ traps decreases when they are subjected to
LSE.

• When a distribution of traps is mentioned, this can equivalently refer
to a distribution of traps in a large device or to a distribution of traps
over many small devices each containing only a few traps.

• In the limit for high enough switching frequencies, the switching fre-
quency is not important for the LF noise of the device. τe,eff And τc,eff

are not a function of frequency.
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4.5 Conclusion

In this chapter, Shockley-Read-Hall theory in conjunction with a bias de-
pendent trap energy level is used to model RTS noise in MOSFETs under
nonstationary conditions. In this way, the various experimental results were
modelled.

The simple case where the device is periodically and abruptly switched bet-
ween two states, and where the switching frequency is made very high rela-
tive to the RTS corner frequency is treated analytically. Under the assumpti-
ons of this analysis, a cyclostationary RTS can be modelled by an equivalent
stationary RTS. It is shown that under large signal conditions device noise
is dominated by different traps compared to the steady state situation. A
non-exponential distribution of trap time constants (either in a single large
device or over an ensemble of small devices) can lead to a reduction in LF
noise when the device is subjected to large signal excitation. For example,
if the trap density near the center of the bandgap is lower than near the
conduction band edge, subjecting the device to LSE will lower its LF noise.

To analyse more complex situations, a numerical simulator is presented that
generates cyclostationary random telegraph signals. This simulator is useful
in more complex situations, for example where the bias of the device is
varied in a continuous manner or where we are interested in device noise
briefly following a single bias transient. The simulator produces results that
are in excellent agreement with a wide variety of measurement results.

The predominant limitation of the modelling work is that we do not, in
general, know what the distribution of traps in a device is. This holds for
both the distribution of the energy level of the trap and for the distribution
of the distance of the trap from the channel in the oxide. Alternatively, LF
noise measurement under LSE may be used as a characterization method
for the trap distribution in energy. This can provide independent validation
of other trap characterization methods.
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Chapter 5

Perspective on application

5.1 Introduction

In this chapter LF noise is treated from a designer’s point of view. A review
of literature is presented, as is a discussion in what ways scaling can be
used to improve the LF noise performance of circuits. Next, we will discuss
how LF noise reduction by large signal excitation (LSE) can be applied to
analog CMOS circuits. Rather than discussing every possible application
of LSE in detail, three classes of circuits will be examined. In the first, time
continuous circuits, a transistor is periodically switched out of the circuit,
and replaced by another. This technique can be applied to single devices
or to whole (sub) circuits. The second class of circuits are sampled data
circuits. The time-discrete nature of these circuits allows, in principle, the
use of LSE to reduce LF device noise when the devices are not used. An
example of this type of circuit is an imager pixel in a CMOS image sensor,
which will be covered in some detail. The third class of circuits are circuits
where large signal excitation is present by virtue of the operation of the
circuit. Examples of this type of circuit include VCO’s and mixers. In these
circuits, it is sometimes possible to incorporate LSE against LF noise by
ensuring that devices in the circuit experience bias excursions to well below
threshold. Next, some novel uses of LF noise under LSE will be briefly
discussed. Finally, we will review LF noise modelling work and how this
impacts the application of LF noise under LSE.
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Review of literature

In literature, some applications of LF noise reduction by LSE have appea-
red. Unfortunately, much of the work is lacking in important ways. Many
authors mistakenly believe that the LF noise reduction through LSE is mo-
delled in current circuit simulators, and therefore mistake device-physical
effects of LSE with circuit effects of LSE. Not many authors present me-
asurement results of LF noise under LSE, and none present any measure-
ments of spread of the effect on a group of devices.

• Several authors mistakenly believe the change in LF noise by LSE
can be simulated, which is, to the best of my knowledge, incorrect at
this time [3, 8].

• The distinction between a change in upconversion factor and a change
in LF noise level is not made [3, 8].

• It is not always clear that LF noise limits the performance of the ap-
plication in question [43].

• Noise measurements are not always given [8, 43].
• A comparison between simulation and measurement results is not al-

ways made [43].
• Measurements are given but only from a single device [73].

Scaling to combat 1/ f noise

Faced with a circuit that does not meet the required performance due to
LF noise, a designer can scale the circuit up to improve performance. The
scaling rules given here can always be applied to the whole circuit, but the
conclusions are equally valid if only part of the circuit is scaled up. The
resources that a designer can expend to achieve his goals are power (P)
and area (A), and the goals he can achieve are a higher SNRth (directly
proportional to P) and a higher SNR1/f (directly proportional to A). Scaling
both A and P up at the same time is commonly known as W -scaling or
conductance-scaling [37].

To give an overview of scaling possibilities, the simple quadratic MOSFET
model is applied, i.e. short-channel effects are ignored. Keeping VGT con-
stant during scaling is a reasonable approach since almost all parameters of
the circuit depend on VGT in a non-linear fashion. It makes sense, therefore,
to first optimize the performance of the circuit, and once all performance
criteria are met, the designer can scale the circuit to meet noise require-
ments without changing VGT. Specifying a specific 1/ f noise model is not
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Time-continuous circuits

Original Increase only A Increase only P Increase A and P.

W n1/2W n1/2W nW

L n1/2L n−1/2L L

WL(∝ A, Cin) nWL WL nWL

W/L(∝ P, Isignal, gm) W/L nW/L nW/L

VGT VGT

Psignal Psignal n2Psignal n2Psignal

SVG signal SVG signal

SVG th SVG th n−1SVG th n−1SVG th

SVG 1/f n−1SVG 1/f SVG 1/f n−1SVG 1/f

SNRth SNRth n SNRth n SNRth

SNR1/f n SNR1/f SNR1/f n SNR1/f

BW (∝ gm/Cin) n−1BW nBW BW

Table 5.1: Scaling by a factor n to reduce thermal and LF noise

required since all 1/ f noise models have the same geometry dependence.
The scaling overview is given in table 5.1

The bandwidth of the circuit is assumed to be proportional to gm/Cin. Since
gm scales with P and Cin scales with A, the bandwidth of the circuit scales
with P/A. Hence, the required bandwidth fixes the ratio P/A. The only
remaining liberty the circuit designer has is increasing A and P proportio-
nally until the noise targets are met.

5.2 Time-continuous circuits

Introduction

One rather simple way of combating LF noise is to simply duplicate an
entire circuit a number of times. If switches and a multi phase clock source
are added, the circuit of fig. 5.1 results.
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SNR-limited
circuit [ , ] (a)P A

SNR-limited
circuit [ , ] (b)P A

Source Load

n-phase clock

Repeat timesn

Figure 5.1: Multipath scaling to combat noise

The principle of operation of the circuit in fig. 5.1 is that at any instant in
time, one of the available circuits is active, and the others are turned off.
The inactive circuits do not draw any power when they are off and noise-
limiting devices in the inactive circuits are (or can easily be) subjected to a
large signal (eg. VGS is made ‘0’), in order to reduce their LF noise in the
subsequent phase, when they are active. This schematic is representative of
a large class of circuits, and represents either a complete circuit or a noise-
limited part of a larger circuit. In the analysis, it is assumed that the addition
of switches before and after the circuit in question is feasible and without
significant penalty in terms of area and power spent. This is not always
the case, of course, but is nevertheless a useful assumption that enables a
baseline comparison of different noise reduction strategies.

Comparison between multipath and area scaling

Since the multipath topology spends die area and not power, the most ap-
propriate comparison is to area scaling as described in table 5.1. For this,
the systematic effect on the noise performance of the multipath topology
needs to be considered first. The comparison will be made under the condi-
tions that the original circuit is simply duplicated twice.

Thermal noise

In terms of thermal noise, the performance of the circuit has not changed
in any significant way. During the first half of the period, circuit (a) is
contributing thermal noise to the output, and during the second half of the
period, circuit (b) is contributing thermal noise to the output. The PSD of
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Figure 5.2: Noise performance of two-path system
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Figure 5.3: Noise PSD of two-path system

thermal noise at the output is at all times equal to the PSD of thermal noise
of one of the two circuits. Since circuits (a) and (b) are nominally identical,
the thermal noise performance of the multipath topology is the same as that
of a single circuit.

LF noise

The output noise of the multipath topology is given in fig. 5.2. It can be seen
as the addition of two LF noise sources, that of circuit (a), modulated by a
square wave, and that of circuit (b), modulated by a phase shifted version
of the same square wave.
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5. PERSPECTIVE ON APPLICATION

In the frequency domain (fig. 5.3), the noise contribution of circuit (a)
consists of aliases of the original LF noise spectrum around DC and odd
multiples of the switching frequency. Following the derivation of section
3.2, the relative power of the aliases is 1/4 for the baseband alias (-6 dB),
and 2/(nπ)2 for the higher order odd aliases (-6.9, -16.5 and -20.9 dB for
the first, third and fifth harmonic respectively). Summing the power of the
baseband and all odd aliases, exactly half the power of of the original LF
noise spectrum (-3 dB) results, as is immediately obvious from the time-
domain view of fig. 5.2 where it is seen that one circuit is active for half of
the total time.

Since the output noise contribution of circuit (b) is not correlated to the out-
put noise contribution of circuit (a), the PSD’s of both noise contributions
may simply be added. This means that at the output, we get a relative am-
plitude of the aliases of the LF noise of -3.0 dB around DC, and -3.9 dB,
-13.5 dB, and -17.9 dB around the first, third and fifth harmonic, respecti-
vely. Summing the power of the baseband and all odd aliases, the result is
twice the noise power contribution of a single circuit, i.e. exactly the same
total noise power as the original LF noise spectrum.

The performance of the multi-path topology can now be compared to the
area-scaled version. This is done in table 5.2 where increasing the area of
a circuit n times is compared to duplicating the circuit n times and peri-
odically switching between them. A distinction is made between simply
switching between the different circuits (‘Multipath scaling, unfiltered’),
and including a lowpass filter at the output. (‘Multipath scaling, lowpass
filtered’).

Considering only the LF part of the output noise PSD, the multipath topolo-
gy works as well as area scaling. Area scaling has the disadvantage that the
bandwidth of the circuit is reduced, whereas the multipath topology has the
disadvantage that the higher aliases of the LF noise need to be removed by
filtering at the output. This effectively limits the bandwidth of the multipath
topology as well.

There is one other point in the comparison between area scaling and multi-
path scaling, and that is that if the two circuits in the multipath topology are
purposely made different, then the multipath topology opens the possibili-
ty of tuning the parameters of the circuit by varying the duty cycle of the
switching waveform. An example of this approach is treated below.

In conclusion, area scaling and multipath scaling will attain the same noise
performance to a first order approximation, and area scaling will do so wit-
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Original Area scaling
Multipath scaling

unfiltered lowpass filtered

A nA nA, switches nA, switches, filter

P P

SVG sig SVG sig

SVG th SVG th

SVG 1/f n−1SVG 1/f SVG 1/f n−1SVG 1/f

SNRth SNRth

SNR1/f nSNR1/f SNR1/f nSNR1/f

Table 5.2: Comparison between area scaling and multipath scaling

hout the added complexity of a clock source, switches and a lowpass filter.
On the other hand, multipath scaling allows the LF noise of the circuit to
be reduced by subjecting the devices to LSE, and enables tuning of circuit
parameters if the two circuits are not identical. How the benefits of LF noi-
se reduction by LSE, available in the multipath topology, weigh against the
implementation problems (switches, a filter and a clock source) will depend
to a large degree on the LF noise reduction by LSE available in a particular
technology as given in table 3.3.

Comparison between multipath scaling and a chopper structure

In comparison to area scaling, the multipath topology may seem to be a
competitive approach, the only significant disadvantages being the added
switches, clock source and lowpass filter. However, in situations where
such additions are feasible there is often a much better approach to combat
LF noise, namely making a chopper structure.

In order to implement a chopper structure, the circuit first needs to be made
differential.

According to table 5.1, each half of the differential circuit can be made
using half the area and half the power of the original circuit, so that the
complete differential circuit occupies the same area and draws the same po-
wer as the original circuit. Each half will have the same bandwidth, but
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Figure 5.4: Tunable current source with LF noise reduction due to LSE

half the SNR of the original circuit. Since the output is defined as the dif-
ference between the outputs of the two signal paths, and the noise power of
the two halves is uncorrelated, the SNR of the differential structure is equal
to that of the original circuit. So, to a first order approximation, making
a circuit differential is without penalty in terms of area and power spent.
Next, a clock source, switches and a lowpass filter are required, just as for
the multipath topology.

Detailed analysis of the chopper structure [15] shows that a chopper structu-
re removes the 1/ f noise completely, without increasing the thermal noise
level. This is often a much better approach, since all the desired benefits
are obtained while the only added area is for a clock source, switches and a
filter.

Example of a multipath circuit: current source

One example of a multipath topology that combines LF noise reduction by
LSE and tunability by unequal design of the different paths is the tunable
current source in fig. 5.4. The two MOSFETs are driven in antiphase.
Because they are driven with the same VGS, and they differ by a factor 2 in
their W/L ratio, the output current varies periodically in time between I and
2I. The average output current is continuously variable between I and 2I by
changing the duty cycle.

A prototype of this circuit was realized on a breadboard using HEF 4007
n-channel MOSFETs. VT is approximately 1.9 V. To make a 2W/L device,
two devices were placed in parallel. VGS was 2 V when the device was
‘on’ and 0 V when the device was ‘off’. The average output current was
measured to vary linearly between 140 µA and 280 µA depending on the
duty cycle of the driving signal. These devices were observed to exhibit an
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Figure 5.5: Systematic LF noise behaviour of tunable current source

LF noise reduction of 6 to 8 dB when subjected to LSE (see section 3.3 for
details), so the same reduction in this circuit application is expected.

Apart from the noise reduction due to LSE, there is also a systematic effect
that needs to be considered. dc = 0 (0% Duty cycle) is the case where the
2W/L device is ‘on’, and dc = 1 is the case where the W/L device is ‘on’.
Looking at the output LF noise PSD of both devices:

PSDW/L ∝ (dc)2

PSD2W/L ∝ 2(1−dc)2

PSDtotal = PSDW/L +PSD2W/L ∝ dc2 +2(1−dc)2 (5.1)

Taking the output noise for dc = 1 (where the W/L device is ‘on’) as the
reference, the expected output noise power as a function of the duty cycle
can be plotted. This is the solid line in fig. 5.5. In the absence of any device-
physical effects, the same LF output noise PSD for a duty cycle of 0.33 as
for a duty cycle of 1 is expected. Any difference observed between the LF
output noise for those two duty cycles is attributed to the reduction of LF
device noise due to LSE. The measured data is also plotted in the figure for
several different duty cycles; it is noted that the LF noise for dc = 0.33 is
approximately 6 dB lower than for dc = 1.
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Conclusion

Whereas the multipath technique to combat 1/ f noise is feasible, and al-
lows use of the LF-LSE technique to reduce LF device noise, it compares
unfavourably in terms of power and area spent to the ‘classical’ chopper
structure, which, unlike the multipath technique, not only reduces in-band
LF noise but eliminates it altogether. Like the multipath technique, a chop-
per structure allows parameter tuning by designing both ‘halves’ of the cir-
cuit differently. In situations where addition of a clock, switches and a low-
pass filter is not possible, area scaling offers a viable alternative to the mul-
tipath topology. Though area scaling reduces the bandwidth of the circuit,
the multipath technique requires lowpass filtering to achieve a systematic
advantage in the first place, as shown in table 5.2.

In this light, use of the multipath technique to combat 1/ f noise by the LSE
effect cannot be recommended in general.

5.3 Time-discrete circuits

Introduction

An important function of digital computers is signal processing involving
inputs from analog sensors and outputs to analog actuators of many sorts.
Computers perform signal processing in a time-discrete fashion, and this
mandates conversion from the time-continuous to the time-discrete domain
and back again. This is done by a sampling system in the ADC at the input,
and a reconstruction filter in the DAC at the output.

A generic system is shown in fig. 5.6. It consists of an analog sensor,
followed by some analog signal processing/preamplification circuitry, an
ADC, a processor, and an output via a suitable DAC to some actuator.

Before the ADC, filtering is required to limit the bandwidth of the input
signal to prevent aliasing, and amplification is required to alleviate the noise
and dynamic range requirements of the ADC. Noise plays an important
role in such a preamp as signal levels may be very low. MOSFET 1/ f
noise is also important in such a preamp since it is often desired to integrate
the preamp with the digital CMOS core for single-chip solutions to signal-
processing tasks.

The time-discrete nature of the digital signal processor means that there
is some design freedom in the analog front-end. In particular, since the
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Figure 5.6: Generic signal processing system with digital core

ADC does not require the input signal to be valid at all times, but only
around its sample instants, the transfer function of the preamp does not
need to be continuous in time. Designing an analog front-end that operates
discontinuously in time in synchronism with the system clock will be shown
to bring benefits in terms of noise performance.

In simple sampled circuits, LF noise of the active devices may limit the noi-
se performance of the circuit. Since the circuit does not have to operate in
a time-continuous fashion, the noise limiting devices in the circuit can be
subjected to LSE to reduce their 1/ f noise. This does not require expen-
diture of significant area or power. In fact, power consumption may even
go down because devices in the preamp do not draw power when they are
turned ‘off’.

Correlated double sampling

One well-known technique that can be applied in time-discrete systems be-
fore sampling to reduce the LF noise of the preamp before the sampler is
‘Correlated Double Sampling’ (CDS). Despite the positive effect it has on
LF input noise, the LF noise may still play a significant role at the output of
the CDS circuit. In this section, the conditions under which this is the case
will be derived. A generic CDS system is shown in fig. 5.7.

We assume a signal source, followed by a preamp of bandwidth ψ fs that
suffers from additive white and 1/ f noise. The circuit samples the signal
at a frequency fs. The two-phase sampling clock allows us, in phase φ2,
to make the input ‘0’ and take a sample of the noise of the preamp before
taking a sample of the input signal in phase φ1.

The sample of the noise is then subtracted from the sample of the sig-
nal+noise. In figure 5.7 this is done in the digital domain, though it is
also possible (and advantageous with respect to quantization noise) to im-
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Figure 5.7: Correlated double sampling

plement the subtraction in the analog domain. It is important to note that the
CDS can only be applied ‘around’ an amplifier if its input can be accessed;
noise originating from before the first switch is in no way influenced.

Intuitively, the operation of the CDS is obvious: If the noise is strongly
correlated in time (i.e. it has a significant component that is LF compared
to fs), the two samples of the noise from phase φ1 and φ2 will be almost
identical and the noise will be largely cancelled by the CDS operation. If,
on the other hand, the two noise samples are uncorrelated in time, subtrac-
ting them is equivalent to adding their powers. Because of this, the CDS
operation will double the output noise power if the noise is white.

Despite the attenuation of LF noise by CDS, LF input noise may still be
dominant at the output. In appendix A, the condition for which 1/ f noise
is the dominant noise source despite the CDS is derived.

For the realistic case ψ = 5; i.e. an amplifier bandwidth 5 fs,

fc ≥ 1.5 fs (5.2)

is found as the condition for which 1/ f noise dominates despite the CDS. In
this equation, fc is the 1/ f ‘corner frequency’ where S1/f equals Swhite, and
fs is the CDS sampling frequency, i.e. the frequency at which the CDS cir-
cuit generates output samples. Numeric solutions for other amplifier band-
widths are given in table 5.3.

If 1/ f noise is the dominant noise source at the output of the CDS circuit,
LF components of the 1/ f noise are adequately suppressed, but the HF part
of the 1/ f noise contributes noise at the output. From fig. A.5 it is noted
that the dominant 1/ f noise contribution comes from a frequency around
0.74 fs. One example of a circuit where 1/ f noise is typically the dominant
noise source despite the use of CDS is an imager pixel. In the following
section, we will discuss how subjecting the devices in an imager pixel to
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Relative BW (ψ) 1/ f noise dominates if fc >

1 0.61 fs

2 0.82 fs

5 1.50 fs

10 2.48 fs

Table 5.3: Smaller BW of amplifier in CDS system increases sensitivity to
1/ f noise

Iext
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VDD

M1

M2

M3

M4

TX

pinned
photodiode

floating
diffusion

Dominant LF
noise source

Figure 5.8: CMOS imager pixel

LSE influences their LF noise.

Example of a CDS circuit: Imager

One well known application of CDS is in a CMOS imager pixel. In fig.
5.8, an imager pixel is shown. After a certain integration period during
which light is incident on the photodiode, transistor M1 is switched on and
resets the floating diffusion to a high potential. This reset voltage is read
out by asserting the Row Select line, which connects transistor M2 to the
current source Iext that is external to the pixel. After the read-out of this
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Figure 5.9: Sample positions for CDS in imager

reset voltage, the photo-charge is transferred to the floating diffusion via
transfer gate M4, and read-out in the same way. By subtracting both read-
out signals a correlated double sampling operation is performed, allowing
removal of offset and kT/C noise of the photodiode. M1 to M4 have to be
very small to maximize the photosensitive area in the pixel. M1, M3 and
M4 are switches and do not exhibit much LF noise, leaving the noise of
M2 as the dominant LF noise source in the front-end, despite the correlated
double sampling (see table 5.3 above).

LSE can be applied to M2 to influence its LF noise. Applying LSE at the
gate of M2 is not possible as parasitic charge injection (if LSE is applied
between the two sampling moments of the CDS) would corrupt the photo
charge at its gate. Also, this would mean addition of circuitry to every pixel,
thereby increasing the pixel size or decreasing the size of the photodiode
and thereby the sensitivity. LSE can however be applied at the source of
M2 via the column bus. This has the additional advantage that the circuitry
to pull ‘up’ the column bus only needs to be replicated once per column,
not once per pixel.

To investigate whether this is beneficial, measurements were performed on
a number of devices that were subject to the same bias conditions as M2
would be in a real circuit. In the noise measurements, CDS operation of
the actual circuit is replicated so that precisely the noise that is interesting
to us is observed. This is illustrated in fig. 5.9. The simplest way to apply
LSE is to first keep the device ‘off’ for a relatively long time, and 0.5 µs
after its turn-on transient, a first sample of the noise can be taken (s1). 3 µs
later, a second sample of the noise is taken (s2). The mean square differen-
ce between these two samples is calculated: (s2 − s1)2. This is the output
noise power of the CDS, and by measuring it directly and comparing it to
(s2 − s1)2 in the steady state, a judgement can be made on whether subjec-
ting M2 to LSE in this manner is useful.
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Figure 5.10: Noise measurement when applying CDS

In fig. 5.10, measurement results obtained in this way for 35 devices with
areas between 0.175 µm2 and 1.75 µm2 are given. In the figure, the noise
under steady state bias conditions is plotted along the x-axis, and the noise
when the device is turned ‘off’ briefly before the sampling instants by pul-
ling the source terminal up to VDD is plotted along the y-axis. The 45o line is
the boundary between those devices showing more, and those showing less
noise when subjected to LSE. The majority of devices in this plot lie abo-
ve the 45o line: on average, (s2 − s1)2 rises from 1.5× 10−4 to 3.2× 10−4

when the device is subjected to LSE. Spread in the results is considerable;
over two orders of magnitude for both the steady state and the LSE mea-
surement. This is a rather disappointing result for the LSE technique which
was seen to reduce the LF noise of the same devices in chapter 3.

Explanation of the measurement results

These measurement results can be explained by assuming that the input
noise of the CDS circuit is predominantly RTS noise. We will show that
the measurement results are in line with the predictions made by the non-
steady-state SRH model of chapter 4.

From the analysis of the operation of the CDS circuit, it was found that the
dominant noise contribution at the output comes from around 0.74 fs. To
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facilitate analysis, it will be assumed that there is only a single RTS present
at the input of the CDS, and that it has an f0,RTS of 0.74 fs. RTS noise
with a much lower corner frequency is suppressed by the CDS action, and
RTS noise with a much higher corner frequency is suppressed by the limited
bandwidth of the amplifier. It will further be assumed that the trap causing
this RTS is emptied by turning the device ‘off’ prior to the CDS operation.
The time between the two CDS samples is ts/2, which in this application is
3 µs, so ts =6 µs, fs =167 kHz and 0.74 fs is 123 kHz.

When the device is turned ‘on’, the RTS exhibits transient behaviour. From
eq. 4.4, the occupancy of the trap as a function of time can be calculated:

f (t) = fsteady state

[
1− e−t/τeff

]
(5.3)

where τeff = 1/ω0RTS. This is a simple exponential function starting from
0 and ending at fsteady state for t → ∞. From eq. 4.18, it is known that the
steady state variance of a steady state RTS is given by

varsteady state =
β

(1+β )2

= fsteady state(1− fsteady state) (5.4)

This not only holds for the steady state but also during a transient:

var(t) = f (t)(1− f (t)) (5.5)

In fig. 5.11, the transient variance of an RTS is plotted as a function of
t/τeff for three different RTS’es with a steady state β of 0.1, 1 and 10. The
characteristic ‘hump’ in the variance for β = 0.1 that is here predicted by
theory is the same that is observed in the transient measurement of section
4.4.

The CDS operation when the input is the transient occupancy and variance
of fig. 5.11 can now be examined. The output noise of the CDS operation is
(s2 − s1)2. A useful simplification can be made by assuming that s1 and s2

are not correlated. This simplification is justified by the fact that the RTS in
question is so fast that its contribution to the output noise is significant, i.e.
as far as CDS is concerned, s1 and s2 show little correlation. Under these
conditions,

Poutput CDS =(s2 − s1)2

=var(t2)+var(t1)+ [ f (t2)− f (t1)]
2 (5.6)
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Figure 5.11: Transient occupancy and variance of RTS

In the steady state, Poutput CDS is simply given by var(t1)+var(t2) since the
occupancy f (t) is constant. Under transient conditions, the first sample is
taken almost instantly after turn-on, as fig. 5.11 shows that the variance is
low at that time. In this way, it is hoped var(t1) will be minimal. This seems
beneficial, however reducing var(t1) comes at the expense of a difference
between f (t1) and f (t2). Taking the extreme case where the first sample is
taken at the turn-on instant, and the second sample is taken in steady state,
(This condition is not entirely satisfied as the second sample will be taken
after approximately 2.3τeff, but it is a fair approximation for the insight
we desire), the output noise of the CDS operation in steady state can be
compared to the output noise for the LSE case1.

In steady state:

Poutput CDS =var(t1)+var(t2)
=2varsteady state

=2 fsteady state(1− fsteady state)
(5.7)

1If it is indeed possible to take the first sample at the turn-on instant when the variance of
the LF noise is 0, taking a second sample seems rather pointless since we already have a noise-
free sample, however the CDS operation is still required to combat offset and kT/C noise of
the photodiode.
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Immediately after turn-on:

Poutput CDS =var(t2)+var(t1)+ [ f (t2)− f (t1)]
2

=varsteady state +0+( fsteady state −0)2

= fsteady state(1− fsteady state)+ f 2
steady state

= fsteady state (5.8)

The CDS output noise for the steady state case and the LSE case as a func-
tion of fsteady state is plotted in fig. 5.12. In the top figure, the CDS output
noise is given as a function of the steady state occupancy for both the stea-
dy state case and the LSE case. The steady state curve shows a maximum
output noise for an occupancy of 0.5. This is twice the variance of the RTS,
which is the result expected since it was assumed that the two samples of
the RTS were uncorrelated. The LSE curve is linear; as the variance of s1

decreases, the average difference between s1 and s2 increases. Since the
average difference between s1 and s2 is due to a shift in DC level of the
noise, it may seem strange to group it under ‘noise’. However, since there
is no a priori knowledge of the trap, it is not known what the size of this
DC component is and it must consequently be treated as undesired noise.
In the lower figure, the ratio between the CDS output noise power for the
LSE case and the CDS output noise power for the steady state case is plot-
ted. This figure is central in understanding the measurement results: when
subjecting a device to LSE, a small decrease in the output noise (a factor 2
at most) may result; this will happen for traps that have a very low steady
state occupancy. For traps that have an occupancy of 0.5, the output noise
power is the same for the LSE and the steady state case. For traps with an
occupancy of more than 0.5, the ratio between the LSE output noise and the
steady state output noise grows rapidly and is not limited.

This is in excellent correspondence with the measurement results of fig.
5.10, where some devices were seen to exhibit a slight decrease in CDS
output noise under LSE, many were observed not to be influenced at all,
and some showed a strong increase in CDS output noise when subjected
to LSE. As further support for this conclusion, it is noted that the transient
occupancy and variance as predicted by eq. 5.3 and 5.5 have been observed
experimentally in the transient noise measurement presented in section 4.4.

The important question that remains to be answered is whether an LSE
biasing scheme can be devised that gives an LF noise benefit in combination
with CDS. From the above analysis, one characteristic of such a biasing
scheme is clear, namely that it should ensure that the bias history of both
sample instants is the same. An on/off square wave with a duty cycle that
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Figure 5.12: Output noise of CDS operation for steady state biasing and
LSE

is as low as possible would satisfy this requirement, where the two samples
for the CDS are taken in subsequent ‘on’ periods of the square wave, as
long as possible after the start of the square wave.

Conclusion

Simple preamps for time-discrete systems suffer from LF noise, and a re-
duction in the LF noise is welcome and possible. With minimal area ex-
penditure, it is often possible to turn noise-limiting devices in the preamp
off, and this reduces their LF noise. If done in synchronism with the system
clock, it can be entirely transparent from a signal processing point of view:
the circuit behaves exactly as before with the exception that the LF noise
performance of the circuit is improved. Power consumption of the circuit
may also decrease.

109



5. PERSPECTIVE ON APPLICATION

In correlated double sampling systems, one can, despite the use of CDS,
still have a dominant LF noise contribution at the output. Though the low
frequency part of the LF noise spectrum is well filtered out by the CDS ope-
ration, the high-frequency part of the LF noise spectrum can still contribute
significantly to the output noise.

The case where the device is turned off once prior to using it for CDS is
analysed. Making the realistic assumptions that the device noise is predo-
minantly RTS noise and that the traps causing the RTS noise are emptied by
turning the device off, it was shown that the transient SRH model developed
in chapter 4 explains the measurement results. In view of the predictions
made by the model, which are in correspondence with the measurement re-
sults, subjecting the device to LSE in this manner in order to reduce its LF
noise is not recommended in CDS circuits as the disadvantages outweigh
the potential benefits. For CDS circuits it is important that the bias history
of both sample moments is made as similar as possible.

5.4 Large-signal circuits

Introduction

Large-signal circuits are an important class of circuits where the devices
are operated under large-signal conditions. In RF-CMOS design, the sup-
ply voltage drops for each next process generation, while at the same time
high demands are placed on the required signal to noise ratio or the output
power. This mandates large signal operation of the circuit: rail to rail sig-
nal swing is not uncommon. Examples of RF circuits where the LF device
noise is important and the signal swing is large include VCO’s, mixers and
PLL’s. The high frequency of operation of these circuits means that it is not
practical to apply techniques such as correlated double sampling or chop-
ping. Expending power to reduce the LF noise (see sec. 5.1) is not desirable
as it increases the often already significant power consumption of the cir-
cuit, and a reduction in bandwidth by area-scaling is often not acceptable
either. In these circuits, simple measures can sometimes be taken to ensure
that the noise limiting devices are cycled to well below threshold, thereby
reducing their LF noise.
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Upconversion mechanisms

Before solutions to LF noise problems in RF circuits can be considered, we
must consider how LF noise comes to play an important role in RF circuits
in the first place.

If the circuit is a baseband circuit, the signal is in direct competition with
the LF device noise. Whereas traditionally, LF device noise has been a phe-
nomenon relevant at very low frequencies, it is not uncommon for typical
devices used in CMOS circuit design to have an LF noise corner frequency,
fc, of up to several MHz. From table 2.3 it can be seen that the corner fre-
quency is expected to rise further in future process generations. As a result
of this, LF noise is a factor of importance in virtually all baseband circuits.

LF noise also plays an important role in RF circuits that operate far above
the LF noise corner frequency. A brief review of how this happens in some
common circuits is presented.

• VCO’s
In VCO’s, LF device noise is upconverted to reappear as phase noise
close to the carrier. Upconversion mechanisms are discussed in detail
in [21]. The analysis is linear, time-variant; using an ‘Impulse Sensi-
tivity Function’ (ISF) the sensitivity of the oscillator to disturbances
such as LF noise is modelled. The model explains that white noise re-
appears as 1/∆ f 2 phase noise, and 1/ f noise appears as 1/∆ f 3 phase
noise. In theory, a perfectly symmetrical waveform gives a DC-free
ISF which should prevent upconversion of LF noise to phase noise al-
together. Upconversion mechanisms in ring oscillators are discussed
in [22] and [19].

• Mixers
In an active mixer as given in fig. 5.13, a simple analysis might lead
to the false conclusion that there is no LF device noise at the output.
After all, LF noise of the input transconductor M1 is upconverted
by the mixer to appear around multiples of the LO frequency at the
output, where it is filtered out by an IF lowpass filter. The switch tran-
sistors M2 and M3 might be assumed to switch in an instantaneous
fashion, so the switch transistor is either off or in series with the input
transconductor. If the output impedance of the input transconductor
is high, no LF switch noise is expected at the output.
A more detailed analysis of the active mixer [13] reveals that there
are in fact several mechanisms by which LF device noise appears at
the output in direct competition with the desired IF signal. The most
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Figure 5.13: Active mixer

important contributions to LF noise at the output are: (1) Gate re-
ferred LF noise of the switches that modulates the switching instant;
(2) Input transconductor LF noise that leaks to the output via offset
of the switches, and (3) LF switch noise that charges and discharges
the parasitic capacitor at the source of the switch pair. This current is
rectified by the mixer to appear in baseband at the output.
Driving the mixer with an ideal rail-to-rail square wave at the LO port
(this is not possible in practice due to limits on LO drive capability
and power dissipation) could in theory eliminate output LF noise due
to effect (1) and (2), however effect (3) can never completely be eli-
minated. The problem of LF noise at the output is obviously more
acute if the mixer is used in a low or zero-IF topology as is common
practice in RF-CMOS front-ends.
Passive mixers are sometimes favoured for their good linearity, the
fact that they have no static power consumption and, since they are
operated at VDS =0, the promise that they will be free from LF noise.
Detailed analysis [46], however, shows that the amplifiers following
such mixers contribute significant LF noise to the output.

• Phase-Locked Loop (PLL)
A typical function of a PLL (fig. 5.14) is to multiply a reference fre-
quency by an integer factor to produce a HF output signal that is pre-
cisely locked in phase and frequency to the reference frequency. The
reference frequency is typically generated by a quartz crystal, and is
of the order of several tens of MHz at most. In its simplest form, the
PLL consists of a Phase Frequency Detector (PFD), a charge pump
and loop filter driving a VCO and a frequency divider.
Jitter performance of the PLL is very important. At offset frequen-
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Figure 5.14: Phase Locked Loop

cies larger than the loop bandwidth of the PLL, jitter performance is
dominated by the characteristics of the VCO. For smaller offset fre-
quencies (the ‘in-band’ performance of the PLL), jitter is dominated
by contributions from the charge pump, the PFD and the frequency
divider. Detailed jitter analysis of PLL’s is given in [44], [5] and [4],
as well as [64].

Measurement of LF noise under LSE at high frequencies

To verify that subjecting the devices to LSE can usefully reduce their LF
noise in applications as those mentioned above, LF device noise was mea-
sured while the devices were subjected to LSE at a high frequency [67]. The
LF noise of the MOSFET is reduced by subjecting it to LSE at frequencies
up to 3 GHz. The experimental method and results are given below.

Method

The easiest way to measure the LF noise of the MOSFET under LSE is
to bias it with a square wave. In this way, the LF noise of the MOSFET
under LSE can easily be compared to the LF noise of the MOSFET under
steady-state bias conditions. A correction needs only to be made for the
systematic effect of the device not being ‘on’ continuously (see section 3.2,
page 35). If care is taken that the ‘on’ state of the square wave bias is iden-
tical to the steady state bias, then it is not necessary to measure or take into
account a possible bias dependency of the LF noise. This method is useful
for frequencies of excitation up to a few MHz. For higher frequencies a
different approach is required. Generating a well-behaved square wave at

113



5. PERSPECTIVE ON APPLICATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

V
G

S
 [V

]

time [µs]

←V
T

Figure 5.15: Excitation voltage waveform with a variable minimum voltage

RF is more difficult than generating a sine wave at the same frequency as
fast square waves place extreme demands on the bandwidth of the circuit-
ry. Moreover, typical fast square wave signal generators are not low-noise.
(Equivalent noise resistance values as high as 1 MΩ are no exception for
50 Ω pulse-generators.) In contrast, low noise sine wave generators for RF
frequencies are readily available, so this is a much more suitable choice for
RF measurements.

While using a sine instead of a square wave is much more feasible at RF,
it makes interpretation of the measurement results more difficult: The de-
vice passes through many biasing points each period and comparison to a
DC-bias noise measurement is not straightforward. The solution is found
by realizing that the MOS device only contributes significant noise during
the time the gate-source voltage is above threshold (and ID �= 0). Also, it
is known from other experiments (see section 3.4) that the device noise re-
duction is a function of the minimum off-voltage. Hence, the minimum
off-voltage can be varied while keeping the waveform above threshold the
same: Such a waveform is shown in fig. 5.15. The threshold voltage of the
device under test is shown in the figure. As long as the waveform above
threshold does not change, neither does the DC drain current of the devi-
ce, and simulators using existing MOSFET noise models (see section 2.5)
predict that the LF noise does not change either.

To produce the waveform of fig. 5.15, the circuit of fig. 5.16 is used. The

114



Large-signal circuits

Figure 5.16: Circuit to produce the waveform of fig. 5.15

Figure 5.17: The complete measurement setup

diode in this circuit conducts during the negative half-period of the RF sine
wave, limiting the negative excursion of the waveform. An RF Choke ‘L’
in combination with a variable resistor ensures that the positive half of the
waveform does not shift as the minimum off-voltage is varied. The variable
resistor needs to be adjusted only once. This waveform is applied to the
gates of the devices under test (see fig. 5.17). Two identical DUTs are
driven in-phase. This allows us to use the common mode rejection of a
differential probe to filter out the RF driving signal and measure the LF
noise of the devices. A low pass filter at the drains (not shown; cutoff
frequency is 100 kHz) helps to keep the drain voltage of the devices constant
during the measurement.

The diode in the circuit has to have a large current handling capacity; around
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1 V from a 50 Ω source is driven into it; this is approximately 20 mA. At this
current, a low forward voltage drop is desired. These demands are fulfilled
by a relatively large, slow diode, which means the setup will not function at
very high frequencies. Fortunately, this is not required and the measurement
can be carried out in two steps: First, at 2 MHz, we show that varying the
minimum ‘off’ voltage reduces the LF noise of the devices. Next, we show
that the LF noise of the device does not change as the frequency of sine
wave excitation is varied.

The first part of the measurement is carried out at 2 MHz. The variable
resistor is adjusted so that the top part of the sine wave is not influenced
by a variation in the minimum off-voltage, as witnessed by the fact that
the DC drain current of the devices does not change as the minimum off-
voltage is varied. For additional verification that varying the minimum off-
voltage does not influence the effective transconductance of the devices,
a small pilot tone (150 µV at 5 kHz) is injected into the gate of one of
the devices under test and its amplitude at the drain is measured. By this
method, the time-average transconductance of the devices was indeed found
to be independent of the minimum off-voltage. The LF noise of the devices
as a function of the minimum off-voltage of the driving waveform can now
be measured. Having carried out this varying off-voltage measurement we
can proceed to RF sine wave measurements. These are carried out with an
unmodified sine wave driving the gates of the DUTs. (The full sine wave
with an amplitude of 600 mV appears at the gate of the DUTs.) As the
frequency of excitation is varied, the bias voltage trajectory of the devices
does not change, and neither the average drain current nor the effective
transconductance of the device changes. Again, injecting a pilot tone and
measuring its amplitude at the drain verifies that this assumption is correct.

Summing up the two-step measurement method:

• At an excitation frequency of 2 MHz, it is demonstrated that the LF
noise of the devices is reduced if the device is cycled to accumulation.

• It is then shown that the LF noise remains low for excitation frequen-
cies of up to 3 GHz.

RF measurement results

Measurements were carried out on n-channel devices from a mature indu-
strial 0.35 µm process: tox =7.5 nm, VT =0.35 V and W/L = 50/0.35 µm. 6
pairs of devices from the same wafer were measured. Devices were contac-
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Figure 5.18: Measurement at 2 MHz showing that cycling the device well
below threshold reduces its LF noise relative to cycling just below threshold

ted using a wafer prober and coaxial probes. The RF signal path is a 50 Ω
line terminated at the DUTs. VDS =2 V and the amplitude of the driving
signal is 600 mV at the DUT gate. VS =VB =0 V. Average current through
each device is 50 µA for all measurements.

For each measurement, the LF noise spectrum is measured using a spectrum
analyser. The spectrum is integrated from 10 Hz to 3 kHz, and the integrated
noise is plotted in fig. 5.18 and fig. 5.19. The results for six nominally
identical device pairs are shown. For reference, 1 nArms drain current noise
(in the same bandwidth) is shown in both figures. All devices show the
same trend. Fig. 5.18 shows that as the minimum off-voltage is reduced,
without changing the effective transconductance of the device, the LF noise
of the device is reduced. The reduction (just as the absolute noise level)
shows spread from device to device. It is in the range of 4-10 dB. This is
in accordance with the results from section 3.6 where a large spread in the
steady state noise level and the noise reduction from device to device was
also observed.

Fig. 5.19 shows that, when driving the DUTs with an unmodified sine wa-
ve, the noise reduction observed at 2 MHz is retained as the frequency of
excitation is increased. The accuracy of the measurements is estimated at
better than +/- 0.5 dB at frequencies up to 500 MHz, and slightly less for
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Figure 5.19: Measurement results at higher frequencies showing that LF
noise is not a function of the frequency of excitation for frequencies up to
3 GHz

higher frequencies. In summary, it is shown using a two-step measurement
method that cycling a MOSFET to well below threshold at 2 MHz reduces
its LF noise by up to 10 dB, and that the noise reduction observed by this
LSE is essentially independent of the frequency of excitation for excitation
frequencies of up to at least 3 GHz.

Conclusion

The measurement results show that subjecting the devices to LSE reduces
their LF noise. This effect can be usefully applied in RF circuits like the
ones discussed in this section. In these circuits, three distinct phenomena
need to be distinguished: First of all, upconversion of LF noise is a sensitive
function of the signal waveform. Secondly, LF noise is bias dependent.
Finally, subjecting the device to LSE reduces its LF noise. On the basis
of experimental data, it is not always possible to make a clear distinction
between these three effects, however taking measures to ensure that the
devices are cycled to well below threshold to reduce their LF noise is a
good idea.
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Figure 5.20: LF noise under LSE is a sensitive detector of radiation damage

5.5 Novel applications of LF noise under LSE

Apart from normal circuit design, in which subjecting a device to LSE can
reduce its LF noise, there are some novel applications of LF noise under
LSE in device characterization. These applications stem from the fact that
under LSE, a different set of traps is contributing to the LF noise of the
device compared to the steady state case.

One novel application is of LF noise under LSE as a sensitive detector of
radiation damage to CMOS devices. To illustrate this, an LF noise mea-
surement in steady state and under LSE was carried out. The device was
then subjected to ionizing radiation. This causes defects in the device. Af-
terwards, the LF noise was measured again. Results are shown in fig. 5.20.
Whereas there is no large difference in the steady state measurement before
and after damaging the device, the LSE measurement has changed signifi-
cantly. Integrating the noise from 10 to 500 Hz, the steady state noise power
has increased by 2 dB. At the same time, the LSE noise power has increased
by 8.5 dB. It is clear that the LSE noise measurement is far more sensitive
to this kind of device damage than the DC noise measurement.

A very similar outcome is observed from an experiment in which devices
are damaged by hot carrier degradation [39]. LF noise measurements in
steady state and under LSE before and after stressing the devices are shown
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Figure 5.21: LF noise under LSE is a sensitive detector of hot carrier dama-
ge; average of 12 devices

in fig. 5.21. Considering the integrated noise power up to 500 Hz, it is noted
that the steady state noise has gone up by 0.95 dB, whereas the LSE noise
has increased by 7 dB in the same time. Here, too, LSE noise is a much
more sensitive detector of device damage than steady-state LF noise.

Both results can be explained using the model of chapter 4. In steady state,
LF noise is generated by traps near the conduction band edge and under
LSE, LF noise is generated by traps deeper in the bandgap (see figures 4.3,
4.4 and 4.5). Before damage the trap density deep in the bandgap is ap-
parently lower than near the conduction band edge; hence the difference
between the steady state and the LSE noise measurement. After damaging
the device, the trap distribution in energy is much more uniform which ex-
plains the fact that the LF noise reduction by LSE is almost absent after
damaging the device.

5.6 Characterization of LF noise

In this chapter, we have discussed in what cases LF noise reduction by LSE
can be exploited in circuit design. Measurement results were presented in
chapter 3. In all measurements, it was found that the LF noise in nominally
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identical devices exhibits considerable spread; in minimal-area devices of
modern processes, the variation is over two orders of magnitude.

In the characterization of LF noise for compact modelling, a rather prag-
matic approach is often followed: it is better to overestimate the LF noise
rather than underestimate it, so parameters are set rather high to ensure that
the model never underestimates the LF device noise [56]. While it is cer-
tainly true that overestimating is better than underestimating LF noise, it is
even better to accurately predict the LF noise, since overestimation of LF
noise leads to unnecessary expenditure of area as shown in section 5.1.

Though in small-area devices LF noise is dominated by RTS, and the LF
noise spectrum may show significant deviation from a 1/ f shape, this does
not detract from the aim of accurate modelling: The model should accurate-
ly predict the noise level that the required percentage of devices fall below
(eg. 99.7% for the commonly used 3σ limit). In a production environment,
individual device behaviour is hardly ever relevant; more important is what
the average and spread of a parameter is over a large number of devices.

If practical use is to be made of noise reduction by subjecting the devices
to LSE, it is imperative first to accurately characterize the LF noise of the
devices in steady state.

Only when correspondence between LF noise simulation and measurement
is within a dB or so, as is presently the case for thermal noise modelling,
will a reduction in LF noise by LSE offer a useful advance in performance.
The difference between the steady state LF noise model and the actual LF
noise performance of the devices should be less than the anticipated LF
noise improvement from LSE, since otherwise, the benefits of the effect are
not significant.

This means that when a process is characterized, a sufficient number of
devices needs to be measured to accurately predict a noise level that the
required percentage of devices will fall below (eg. 99.7%). Furthermore,
wafer-to-wafer spread of LF noise needs to be considered, and the charac-
terization should be repeated to ensure that the LF noise does not change
significantly during production.

In terms of modelling, it is a good idea to express LF noise and bias de-
pendence of LF noise in terms of Nt(E,x): the trap density as a function of
the energy level and the distance to the channel. In this way, the effects of
LSE on LF noise can be incorporated in future models with a minimum of
effort, as an accurate description of Nt(E,x) is sufficient to model LF noise
behaviour under LSE as shown in chapter 4.
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5.7 Conclusion

In this chapter application of LF noise reduction by LSE was discussed.
A comparison was made to traditional methods of tackling the LF noise
problem, such as scaling, CDS and chopping.

In time-continuous circuits, LF noise reduction by LSE may be applied. The
benefits are limited in comparison to simple area scaling. If bandwidth is
not important and lowpass filtering at the output is viable, then LSE compa-
res unfavourably to a differential structure with a chopper. In some specific
cases (eg. bias current sources) making the circuit differential may not be
possible and in those cases subjecting the devices to LSE may offer a bene-
fit.

In time-discrete circuits, the transfer function of the circuit does not need to
be continuous in time, and LF noise reduction by LSE may be conveniently
applied. There is no significant penalty in terms of area spent, and power
consumption of the circuit may even go down. A common technique to
reduce the LF noise of analog front-ends to digital systems is correlated
double sampling (CDS).

If LF noise reduction by LSE is to be applied in combination with CDS, care
must be taken that the bias history of both sample moments is as similar as
possible, since when this is not the case, LSE is more likely to increase than
to decrease the CDS output noise.

In RF circuits, devices are often subjected to LSE by virtue of the operation
of the circuit. In these circuits, it is sometimes easy to ensure that the noise-
limiting devices are cycled well below threshold, thereby reducing their LF
noise. We show that LF noise reduction by LSE works for frequencies of
excitation of up to at least 3 GHz. This is in line with the model presented
in chapter 4, which predicts that the LF noise under LSE is not a function
of the frequency of excitation, as long as the frequency of excitation is high
compared to the LF noise in question. When analysing such circuits, it
is important to attribute observed changes in LF noise performance to the
appropriate mechanism: changing the signal waveform in general changes
three things: the bias dependence of the noise, the upconversion, and the
LF noise due to LSE.

A novel application of LF noise under LSE is presented; namely that it is
an extremely sensitive detector of device damage, eg. by ionizing radiation
or by hot carrier stress. This is understood because LF noise under LSE is
attributed to a different group of traps than the ones responsible for LF noise
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in the steady state. Whilst this is useful for trap characterization, it is also
important to realize that as a result of device damage, LF noise reduction
due to LSE may disappear.

Finally, it is noted that while in certain cases, subjecting a device to LSE
can usefully lower its LF noise, the attainable benefit is limited and the LF
noise does not disappear completely when the device is subjected to LSE.
For LF noise reduction under LSE to be useful in analog circuit design, it
is first necessary that steady state LF noise models be made more accurate.
Once steady state LF noise models can accurately predict LF noise, LSE
can be applied as a technique to further reduce LF noise. LF noise models
based on an accurate characterization of the distribution of traps in energy
and position, Nt(E,x) are beneficial since they not only allow prediction of
steady state LF noise but also of LF noise under LSE.
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Chapter 6

Conclusion

6.1 Summary of conclusions

A summary of the most important conclusions of this thesis is given below.

Regarding LF noise in MOSFETs, it is noted that the MOSFET is a surfa-
ce channel device. Both n and p-channel devices exhibit similar low fre-
quency (LF) noise behaviour that can be explained by a carrier number
fluctuation model (section 3.5). LF noise in MOSFETs is predominantly
caused by Random Telegraph Signals (RTS). This is the case for small de-
vices, but also in larger devices with an area as large as 10 µm2, LF noise
is dominated by RTS.

Regarding the relevance of the topic, it is expected that LF noise in
MOSFETs will remain an important issue in future process generations (ta-
ble 2.3 in chapter 2). In the most realistic scenarios, the LF noise corner
frequency will remain the same or increase as CMOS processes are down-
scaled which means that in many applications (both baseband and RF), LF
noise will continue to be or will become a significant problem. Though an
important question in this context is what kind of gate dielectric will be used
for future CMOS generations, much of the work in this thesis is applicable
to any gate dielectric as long as it contains traps. High-κ gate dielectrics are
renowned for their high trap densities.

Regarding the influence of LSE on LF noise in MOSFETs, it is noted
that biasing a device to an ‘off’ state prior to turning it on for use reduces
its LF noise on average (table 3.3 in chapter 3). Also, the spread of the LF

125



6. CONCLUSION

noise is reduced. For this to happen, the device needs to be turned off to well
below threshold. LF device noise is sensitive to VGS, so the device can be
turned off by either increasing VS or decreasing VG. LF noise in MOSFETs
is a function of the time-average VGS; the frequency of excitation is not
important as long it is high relative to the frequency of LF noise (fig. 5.19).

The influence on LF noise by LSE is explained by a model based on
the Shockley-Read-Hall (SRH) model in chapter 4. It explains LF noise
behaviour in a device under LSE. Only one assumption (which is supported
by experimental data) is made, namely that the emission time constant of
a trap (τe) is dependent on VGS. With this assumption, the SRH-model
predicts that LF noise under LSE comes from a different group of traps
compared to the steady state case. Making the additional assumption (which
is again validated experimentally by several authors) that the distribution of
traps in energy is non-uniform, it can be explained that the LF noise under
LSE changes. In this way, we can account for all measurement results of
LF noise under LSE.

LF noise reduction by LSE can be applied in circuit design, but it is by
no means a cure-all solution to LF noise problems. Only in specific cases
does it bring some benefit. In time-continuous circuits, LF noise reduction
by LSE competes with established noise reduction methods such as area
scaling or modulating techniques that separate the LF noise and the signal in
frequency. The comparison in section 5.2 indicates that LF noise reduction
by LSE is only competitive in very specific cases. Whether or not it is
competitive depends on the process in question. In simple time discrete
circuits, subjecting devices to LSE is without penalty so there is no reason
not to do so. If LF noise reduction by LSE is to be successfully applied in
conjunction with correlated double sampling, care must be taken that the
bias history for both samples is identical, as otherwise LSE will degrade the
noise performance of the circuit. In RF applications, LF noise reduction by
LSE is most promising since other techniques are not applicable there.

Regarding recommendations for future work, the further development
of noise models based on the distribution of traps in energy and position;
Nt(E,x); is to be recommended. If the characterization of trap densities in
position and energy level is correct and complete, such models can explain
LF noise in steady state and under LSE (chapter 4). To this end, it is benefi-
cial if trap densities are characterized by some technique orthogonal to LF
noise measurements. In creation of parameter sets, large numbers of devi-
ces need to be characterized to ensure that models accurately and reliably
predict LF noise and spread in LF noise. Only in this way can designers
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produce optimal designs.

6.2 Original contributions of this thesis

Chapter 2:

• The dependence of the relative conductivity fluctuation (S∆σ /σ2) on
the free carrier concentration n is derived. This is the basis on which
the ∆µ , ∆N and correlated ∆N and ∆µ LF noise models are distin-
guished.

Chapter 3:

• It is shown that LF noise in MOSFETs is influenced by the history
of VGS and that VGS may be changed by changing VG and keeping VS

constant or equivalently by changing VS and keeping VG constant.

• LF noise in p- and n-channel devices is shown to behave in the same
way when the device is subjected to LSE.

• LF noise reduction by LSE is shown to be a very variable effect.
Subjecting a device to LSE is seen to make its LF noise go up or go
down, but on average, the LF noise of a device is reduced if the device
is subjected to LSE.

Chapter 4:

• LF noise behaviour under LSE is modelled using the Shockley-Read-
Hall model applied under non-steady-state conditions.

• A cyclostationary RTS is described by an equivalent stationary RTS
in the limit for T → 0, and the time constants for this equivalent RTS
are derived.

• Under LSE, the LF noise of a MOSFET is shown to be caused by a
different group of traps compared to the steady state bias situation.
If traps are not uniformly distributed in energy level, the LF noise of
the device will change when the device is subjected to LSE.
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6. CONCLUSION

Chapter 5:

• ‘Multipath scaling’, where multiple circuits are alternately used for
signal processing is presented as a technique to reduce LF noise.

• LF noise reduction by LSE used in conjunction with correlated dou-
ble sampling (CDS) is shown to be disadvantageous if the bias history
of both sample instants is not identical.

• A measurement method is presented that allows measurement of LF
noise under LSE for high excitation frequencies without making any
assumptions about the bias dependency of LF noise. Using this mea-
surement method, it is shown that LF noise under LSE is not depen-
dent on the frequency of excitation, thereby validating the model of
chapter 4.

• LF noise under LSE is seen to be an extremely sensitive detector of
device defects, eg. due to radiation damage or hot electron damage.
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Appendix A

Noise performance of CDS
circuit.

Despite the attenuation of LF noise by Correlated Double Sampling (CDS),
LF input noise may still be dominant at the output. The conditions for which
this is the case will be derived below. For noise analysis, we assume a zero
input signal, which reduces the circuit of fig. 5.7 to that of fig. A.1 (a). The
analog equivalent of this circuit is given in fig. A.1 (b) [31]. For analysis
purposes it is further assumed that A = 1.

The transfer function of the CDS circuit with regards to noise performance
can be derived. The impulse response and transfer function of the circuit of

Figure A.1: Equivalent CDS circuit with regards to noise performance
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Figure A.2: Transfer function of CDS circuit

fig. A.1 (b) are given by:

hcds =δ (t)−δ (t − ts/2)
Hcds(ω) =FT(hcds)

=1− e
− jωts

2

Hcds( f ) =1− e
− jπ f

fs (A.1)

In fig. A.2, the transfer function of the CDS circuit is given as a function of
f/ fs. This transfer function is periodic in frequency; only the first period
(from f = 0 to f = 2 fs) is shown. The output noise PSD is given by:

Soutput( f ) = Sinput( f ) |Hcds( f )|2 (A.2)

The integrated noise at the output of fig. A.1 (b) is given by:

Poutput =
∫ ψ fs

0
Soutput( f )d f

=
∫ ψ fs

0
Sinput( f ) |Hcds( f )|2d f (A.3)
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Figure A.3: Output PSD of CDS circuit when input noise is white.

For white noise, this is

Poutput,white =Swhite

∫ ψ fs

0
|Hcds( f )|2d f

=Swhite

∫ ψ fs

0
|1− e

− jπ f
fs |2d f

(A.4)

The output noise PSD due to white noise is given in fig. A.3. Along the
x-axis, the frequency, normalized to fs is plotted, and along the y-axis, the
output noise PSD, normalized to the input noise PSD is plotted.

In fig. A.4, the relative bandwidth of the amplifier, ψ , is plotted along
the x-axis, and the ratio between the integrated output noise power and the
integrated input noise power is plotted along the y-axis. It is noted that the
power gain of the CDS for integrated noise is exactly 2 if the bandwidth of
the white noise is n fs, with n an integer ≥ 1. If the bandwidth of the white
noise is much larger than 2 fs, the power gain of the CDS approaches 2, as
can be understood intuitively.

For 1/ f noise, the same approach is followed: The 1/ f input PSD is given
by:

Sinput,1/f =
Swhite fc

f
(A.5)

in which fc is the 1/ f ’corner frequency’, at which the 1/ f noise PSD
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Figure A.4: Noise power gain of CDS circuit for band-limited white noise.

equals the white noise PSD.

Poutput,1/f =
∫ ψ fs

0
S1/f( f ) |Hcds( f )|2d f

=
∫ ψ fs

0

Swhite fc
f

|Hcds( f )|2d f

=Swhite fc

∫ ψ fs

0

|Hcds( f )|2
f

d f

(A.6)

There are two things that should be noted. First, this integral is convergent
despite the lower limit of f = 0 because |Hcds( f )|2 goes to 0 faster than 1/ f
goes to infinity, and secondly, the integral depends on ψ and fc but not on
fs. This is because the integration limit and Hcds both contain fs terms that
cancel.

The output PSD due to 1/ f noise is given in fig. A.5. Along the x-axis,
the frequency, normalized to the sample frequency is plotted, and along
the y-axis, the output noise PSD normalized to Swhite fc is plotted. This
normalization is derived from the definition of S1/f by equation A.5.

The integrated output noise due to band-limited 1/ f noise is given in fig.
A.6. Along the x-axis, the relative bandwidth of the amplifier, ψ , is plotted.
Along the y-axis, the output noise power relative to the input noise power is
plotted.

To derive under what conditions the 1/ f noise is dominant at the output,
a comparison is made between Poutput,white and Poutput,1/f, and a condition is
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derived for fc in terms of fs.:

Poutput,white ≤Poutput,1/f

Swhite

∫ ψ fs

0
|Hcds( f )|2d f ≤Swhite fc

∫ ψ fs

0

|Hcds( f )|2
f

d f

∫ ψ fs

0
|Hcds( f )|2d f ≤ fc

∫ ψ fs

0

|Hcds( f )|2
f

d f

2 fs

[
ψ − sinψπ

π

]
≤2 fc [lnπ + lnψ −Ci(ψπ)+ γ]

fc
fs

≥ ψ − sinψπ
π

lnπ + lnψ −Ci(ψπ)+ γ
(A.7)

In this expression, Ci is the cosine integral, which can be computed numeri-
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A. NOISE PERFORMANCE OF CDS CIRCUIT.

cally, and γ is Euler’s constant, numerically equal to 0.577. For the realistic
case ψ = 5; i.e. an amplifier bandwidth 5 fs, it is found that

fc ≥ 1.5 fs (A.8)

is the condition for which 1/ f noise dominates despite the CDS.
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Promoveren is een erg leuke bezigheid. Dat komt voor een groot deel omdat
je zo veel capabele, enthousiaste en interessante mensen tegenkomt. Ik wil
een aantal van hen hier bedanken.

In de eerste plaats mijn dagelijks begeleider Eric. Eric, je energie, drive,
professionalisme en enthousiasme is wonderbaarlijk en heel inspirerend. Je
weet als geen ander waar je het over hebt, waar we zijn en waar we naar toe
willen. Je vraagt altijd de juiste dingen op de juiste momenten. Als ik dan
weer in het weekend of om 00:30 een mailtje van je krijg met de mededeling
‘Ik heb er nog eens over nagedacht, en ik denk dat. . . ’ weet ik het weer: als
ik weer zou promoveren zou ik je zo weer als begeleider kiezen.

Iets meer op de achtergrond maar zeker niet minder belangrijk is mijn pro-
motor Bram. Bram, je bent een inspirerend figuur en ik vind het heel gaaf
dat ik een aantal jaar samen met je heb mogen werken. Je bent niet alleen
zeer betrokken bij de technisch-inhoudelijke kant van het werk, maar ook
het managen van de vakgroep doe je met veel enthousiasme en overgave. Je
bent een fijne ‘baas’ om voor te werken en ik hoop dat we de samenwerking
in een of andere vorm nog lang voort zullen zetten.

Het werk in dit proefschrift heb ik niet alleen gedaan. Meer dan een beetje
betrokken waren Jay, Cora en Hans. Als er zinnige dingen in dit proefschrift
staan, zijn jullie daar medeverantwoordelijk voor.

De gebruikerscommissie kwam twee keer per jaar bijeen. Die bijeenkom-
sten heb ik als heel constructief en nuttig ervaren, en dat is primair te wijten
aan de betrokkenheid en kunde van de leden. Jan-Wim Eikenbroek, Peter
Kamp, Frank Karelse, Eduard Stikvoort, Lode Vandamme, Reinout Woltjer
en Paul van Zeijl: bedankt!

Sander Gierkink en Mihai Banu wil ik bedanken voor een geweldige stage
bij Agere in New Jersey. Het was niet alleen erg leerzaam maar ook nog
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eens heel erg leuk!

Martijn Snoeij heeft de IC’s gemaakt waar veel van de metingen in dit
proefschrift op uitgevoerd zijn. Martijn, ik denk dat je een heel signifi-
cante meerwaarde aan het geheel hebt gegeven door langs te komen met de
vraag ’Kunnen we wat met LSE in een imager?’.

Ondersteuning bij het onderzoek kwam van vele kanten. Verschillende stu-
denten hebben bijdragen geleverd die indirect of direct in dit proefschrift
terug te vinden zijn. Bij het meetwerk was het altijd handig om Henk in de
buurt te hebben, en computerproblemen werden altijd tijdig en kundig (niet
altijd met een glimlach van mijn kant, vrees ik. . . ) opgelost door Frederik
en Cor. Organisatorische hulp was altijd ruim voorhanden van de vele men-
sen die door de jaren heen het secretariaat van de vakgroep geleid hebben:
Altijd kreeg ik goede antwoorden op mijn vele vragen: ‘Waar is. . . ?’, ‘Hoe
doen we. . . ?’, ’Hebben we. . . ?, ‘Kunnen jullie regelen dat. . . ?’ Margie,
Marie-Christine, Miranda, Joke, Annemiek en Gerdien: Bedankt!

Wat promoveren op ‘vloer 3’ meerwaarde geeft zijn de enthousiaste colle-
ga’s waar je dat mee mag doen. In de eerste plaats natuurlijk mijn kamerge-
noten: Svetoslav, David en Saša, en recenter: Rameswor en Eric. De andere
AIO’s wil ik ook bedanken voor de vele constructieve en creatieve uurtjes
die we voor het whiteboard in de koffiekamer hebben doorgebracht. Mijn
paranimfen Vincent en Simon: bedankt voor jullie hulp! Op het grensvlak
van ADC’s, software-defined radio en motorfietsen kunnen we vast nog veel
leuke dingen doen! Anne-Johan, ik vond het heel plezierig samenwerken
met je; ik hoop in de toekomst net zulke enthousiaste en toegewijde colle-
ga’s als jij te ontmoeten. Ook de eerstejaars moet ik bedanken voor hun toch
altijd weer inspirerende aanwezigheid in de collegezaal; jullie zorgden voor
de broodnodige afwisseling naast het wetenschappelijke werk. Ik hoop dat
jullie het ook leuk vonden. . .

Ook naast het werk zijn er veel mensen die veel betekend hebben voor me.
Kampvuren stoken, prachtige reizen maken in en buiten Europa en heel veel
dom ouwehoeren over techniek en mooie bochtjes doe ik met mijn vrienden
van de Motorsportgroep. Arthur, Frans, Jelle, Wijnand: Ik hoop nog vele
mooie reizen met jullie te maken!

Tot slot wil ik nog drie ‘direct betrokkenen’ bedanken. Aat en Gabi, jullie
waren niet altijd direct in de buurt, maar ik geloof dat ons contact er kwa-
litatief nooit onder geleden heeft. Bedankt voor alles! Als allerlaatste en
allerbelangrijkste wil ik mijn lieve vriendin Irma bedanken. Irma, je hebt
geen idee hoe veel je voor me betekent.
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